Validation of a Primary Production Algorithm of Vertically Generalized Production Model Derived from Multi-Satellite Data around the Waters of Taiwan
Abstract
:1. Introduction
2. Data and Methods
2.1. In Situ Measurements and Water Sampling
2.2. Satellite-Derived PP Estimates
2.3. Match-Up Data and the Assessment of Satellite PP Models
3. Results
Annual and Seasonal Trends in PP
4. Comparison of Satellite-Derived and in Situ PP
5. Cluster Analysis and Characteristics in the Subareas
6. Discussion
7. Conclusions and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cullen, J.J. Primary production methods. Encycl. Ocean Sci. 2001, 4, 2277–2284. [Google Scholar]
- Eppley, R.W.; Peterson, B.J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 1979, 282, 677–680. [Google Scholar] [CrossRef]
- Marra, J. Approaches to the measurement of plankton production. Phytoplankton Product. Carbon Assim. Mar. Freshw. Ecosyst. 2002, 78–108. [Google Scholar]
- Platt, T.; Sathyendranath, S. Fundamental issues in measurement of primary production. ICES MSS 1993, 197, 3–8. [Google Scholar]
- Ryther, J.H. Photosynthesis and fish production in the sea. Science 1969, 166, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Chassot, E.; Bonhommeau, S.; Dulvy, N.K.; Mélin, F.; Watson, R.; Gascuel, D.; Le Pape, O. Global marine primary production constrains fisheries catches. Ecol. Lett. 2010, 13, 495–505. [Google Scholar] [CrossRef]
- Steemann-Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- Hama, T.; Miyazaki, T.; Iwakuma, T.; Takahashi, M.; Ichimura, S. Measurement of photosynthetic production of a marine phytoplankton population using a sTable 13C isotope. Mar. Biol. 1983, 73, 31–36. [Google Scholar] [CrossRef]
- Lawrenz, E.; Silsbe, G.; Capuzzo, E.; Ylöstalo, P.; Forster, R.M.; Simis, S.G.; Prášil, O.; Kromkamp, J.C.; Hickman, A.E.; Moore, C.M.; et al. Predicting the electron requirement for carbon fixation in seas and oceans. PLoS ONE 2013, 8, e58137. [Google Scholar] [CrossRef] [Green Version]
- Juranek, L.W.; Quay, P.D. Basin-wide photosynthetic production rates in the subtropical and tropical Pacific Ocean determined from dissolved oxygen isotope ratio measurements. Glob. Biogeochem. Cycle 2010, 24, GB2006. [Google Scholar] [CrossRef]
- Saba, V.S.; Friedrichs, M.A.; Carr, M.E.; Antoine, D.; Armstrong, R.A.; Asanuma, I.; Aumont, O.; Bates, N.R.; Behrenfeld, M.J.; Bennington, V.; et al. Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Glob. Biogeochem. Cycle 2010, 24. [Google Scholar] [CrossRef]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.; McPhaden, M.J.; Alexander, M.; Qiu, B.; Visbeck, M.; et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Longhurst, A.R. Ecological Geography of the Sea; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Dogliotti, A.I.; Lutz, V.A.; Segura, V. Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data. Remote Sens. Environ. 2014, 140, 497–508. [Google Scholar] [CrossRef]
- Eppley, R.W.; Stewart, E.; Abbott, M.R.; Heyman, U. Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for the Southern California Bight. J. Plankton Res. 1985, 7, 57–70. [Google Scholar] [CrossRef]
- Tripathy, S.C.; Ishizaka, J.; Siswanto, E.; Shibata, T.; Mino, Y. Modification of the vertically generalized production model for the turbid waters of Ariake Bay, southwestern Japan. Estuar. Coast. Shelf Sci. 2012, 97, 66–77. [Google Scholar] [CrossRef]
- Kameda, T.; Ishizaka, J. Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing. J. Oeanogr. 2005, 61, 663–672. [Google Scholar] [CrossRef]
- Everett, J.D.; Doblin, M.A. Characterising primary productivity measurements across a dynamic western boundary current region. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2015, 100, 105–116. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. A consumer’s guide to phytoplankton primary productivity models. Limnol. Oceanogr. 1997, 42, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Behrenfeld, M.J.; McClain, C.R. Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys. Res. Lett. 2005, 32, L20605. [Google Scholar] [CrossRef] [Green Version]
- Lobanova, P.; Tilstone, G.H.; Bashmachnikov, I.; Brotas, V. Accuracy Assessment of primary production models with and without photoinhibition using Ocean-Colour Climate Change Initiative data in the North East Atlantic Ocean. Remote Sens. 2018, 10, 1116. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.; Antoine, D.; Armstrong, R.; Arrigo, K.; Balch, W.; Barber, R.; Behrenfeld, M.; Bidigare, R.; Bishop, J.; Carr, M.E.; et al. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Glob. Biogeochem. Cycle 2002, 16. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.E.; Friedrichs, M.A.; Schmeltz, M.; Aita, M.N.; Antoine, D.; Arrigo, K.R.; Asanuma, I.; Aumont, O.; Barber, R.; Behrenfeld, M.; et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 741–770. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.C.; Wen, Y.H.; Wang, B.W.; Liu, G.J. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 1219–1236. [Google Scholar] [CrossRef]
- Naik, H.; Chen, C.T. Biogeochemical cycling in the Taiwan Strait. Estuar. Coast. Shelf Sci. 2008, 78, 603–612. [Google Scholar] [CrossRef]
- Tseng, H.C.; You, W.L.; Huang, W.; Chung, C.C.; Tsai, A.Y.; Chen, T.Y.; Lan, K.W.; Gong, G.C. Seasonal variations of marine environment and primary production in the Taiwan Strait. Front. Mar. Sci. 2020, 7, 38. [Google Scholar] [CrossRef]
- Wu, C.R.; Lu, H.F.; Chao, S.Y. A numerical study on the formation of upwelling off northeast Taiwan. J. Geophys. Res.-Oceans 2008, 113, C08025. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Chai, F.; Zhang, C.; Huang, B.; Jiang, Y.; Hu, J. An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait. Cont. Shelf Res. 2011, 31, 3–12. [Google Scholar] [CrossRef]
- Lan, K.W.; Kawamura, H.; Lee, M.A.; Chang, Y.; Chan, J.W.; Liao, C.H. Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank. Cont. Shelf Res. 2009, 29, 903–910. [Google Scholar] [CrossRef]
- Hung, C.C.; Chung, C.C.; Gong, G.C.; Jan, S.; Tsai, Y.; Chen, K.S.; Chou, W.C.; Lee, M.A.; Chang, Y.; Chen, M.H.; et al. Nutrient supply in the southern East China Sea after typhoon Morakot. J. Mar. Res. 2013, 71, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, M.T.; Lan, K.W.; Chan, J.W. Interannual Variability of Wintertime Sea Surface Temperatures in the Eastern Taiwan Strait. J. Mar. Sci. Technol.-Taiwan 2012, 20, 702–712. [Google Scholar]
- Lee, K.T.; Liao, C.H.; Su, W.C.; Hsieh, S.H.; Lu, H.J. The fishing ground formation of sergestid shrimp (Sergia lucens) in the coastal waters of southwestern Taiwan. J. Mar. Sci. Technol.-Taiwan 2004, 12, 265–272. [Google Scholar]
- Lu, H.J.; Lee, H.L. Changes in the fish species composition in the coastal zones of the Kuroshio Current and China Coastal Current during periods of climate change: Observations from the set-net fishery (1993–2011). Fish Res. 2014, 155, 103–113. [Google Scholar] [CrossRef]
- Liao, C.H.; Lan, K.W.; Ho, H.Y.; Wang, K.Y.; Wu, Y.L. Variation in the catch rate and distribution of swordtip squid (Uroteuthis edulis) associated with factors of the oceanic environment in the southern East China. Mar. Coast. Fish. 2018, 10, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.C.; Shiah, F.K.; Liu, K.K.; Wen, Y.H.; Liang, M.H. Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont. Shelf Res. 2000, 20, 411–436. [Google Scholar] [CrossRef]
- Morel, A.; Berthon, J.F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 1989, 34, 1545–1562. [Google Scholar] [CrossRef] [Green Version]
- Howarth, R.W.; Michaels, A.F. Light and dark bottle oxygen technique. In Methods in Ecosystem Science; Sala, O.E., Jackson, R.B., Moone, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 74–80. [Google Scholar]
- Watson, R.; Zeller, D.; Pauly, D. Primary productivity demands of global fishing fleets. Fish Fish. 2014, 15, 231–241. [Google Scholar] [CrossRef]
- Friedland, K.D.; Stock, C.; Drinkwater, K.F.; Link, J.S.; Leaf, R.T.; Shank, B.V.; Rose, J.M.; Pilskaln, C.H.; Fogarty, M.J. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 2012, 7, e28945. [Google Scholar] [CrossRef] [Green Version]
- Hosoda, K.; Kawamura, H.; Lan, K.W.; Shimada, T.; Sakaida, F. Temporal scale of sea surface temperature fronts revealed by microwave observations. IEEE Geosci. Remote Sens. Lett. 2011, 9, 3–7. [Google Scholar] [CrossRef]
- Ming-An, L.; Tzeng, M.T.; Hosoda, K.; Sakaida, F.; Kawamura, H.; Shieh, W.J.; Yang, Y.; Chang, Y. Validation of JAXA/MODIS sea surface temperature in water around Taiwan using the Terra and Aqua satellites. Terr. Atmos. Ocean. Sci. 2010, 21, 7. [Google Scholar]
- Ming-An, L.; Chang, Y.I.; Sakaida, F.; Kawamura, H.; Chao-Hsiung, C.; Jui-Wen, C.; Huang, I. Validation of satellite-derived sea surface temperatures for waters around Taiwan. Terr. Atmos. Ocean. Sci. 2005, 16, 1189–1204. [Google Scholar]
- Tilstone, G.H.; Lotliker, A.A.; Miller, P.I.; Ashraf, P.M.; Kumar, T.S.; Suresh, T.; Ragavan, B.R.; Menon, H.B. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 2013, 65, 14–26. [Google Scholar] [CrossRef]
- Sá, C.; D’Alimonte, D.; Brito, A.C.; Kajiyama, T.; Mendes, C.R.; Vitorino, J.; Oliveira, P.B.; Da Silva, J.C.; Brotas, V. Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia. Remote Sens. Environ. 2015, 168, 403–419. [Google Scholar] [CrossRef]
- Arun Kumar, S.V.V.; Babu, K.N.; Shukla, A.K. Comparative analysis of chlorophyll-a distribution from SEAWIFS, MODIS-AQUA, MODIS-TERRA and MERIS in the Arabian Sea. Mar. Geod. 2015, 38, 40–57. [Google Scholar] [CrossRef]
- Gong, G.C.; Chen, T.Y.; You, W.L. Mixing control on the photosynthesis-irradiance relationship and an estimate of primary production in the winter of the East China Sea. Terr. Atmos. Ocean. Sci. 2017, 28, 1. [Google Scholar] [CrossRef] [Green Version]
- Tilstone, G.; Smyth, T.; Poulton, A.; Hutson, R. Measured and remotely sensed estimates of primary production in the Atlantic Ocean from 1998 to 2005. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2009, 56, 918–930. [Google Scholar] [CrossRef]
- Dundas, I.; Johannessen, O.M.; Berge, G.; Heimdal, B. Toxic algal bloom in Scandinavian waters, May-June 1988. Oceanography 1989, 2, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, S.Y.; Graneli, E. Environmental-conditions and ecophysiological mechanisms which led to the 1988 chrysochromulina-polylepis bloom—An hypothesis. Oceanol. Acta 1991, 14, 397–413. [Google Scholar]
- Jan, S.; Tseng, Y.H.; Dietrich, D.E. Sources of water in the Taiwan Strait. J. Oceanogr. 2010, 66, 211–221. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, Y.L.L. Quantity and quality of summer surface net zooplankton in the Kuroshio current-induced upwelling northeast of Taiwan. Terr. Atmos. Ocean. Sci. 1992, 3, 321–334. [Google Scholar] [CrossRef]
- Lin, I.; Liu, W.T.; Wu, C.C.; Wong, G.T.; Hu, C.; Chen, Z.; Liang, W.D.; Yang, Y.; Liu, K.K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Lan, K.W.; Lee, M.A.; Zhang, C.I.; Wang, P.Y.; Wu, L.J.; Lee, K.T. Effects of climate variability and climate change on the fishing conditions for grey mullet (Mugil cephalus L.) in the Taiwan Strait. Clim. Chang. 2014, 126, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Brander, K.M. Global fish production and climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19709–19714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cruise No. | Date of the Cruise | Season | No. of PP Measurement Stations |
---|---|---|---|
FR1-2009-08-25 | 25 August–5 September, 2009 | Summer | 62 |
FR1-2010-01-07 | 7 January–18 January, 2010 | Winter | 62 |
FR1-2010-04-08 | 8 April–19 April, 2010 | Spring | 62 |
FR1-2010-09-27 | 27 September–6 October, 2010 | Autumn | 62 |
FR1-2011-01-13 | 13 January–24 January 2011 | Winter | 36 |
FR1-2011-04-21 | 21 April–26 April, 2011 | Spring | 36 |
FR1-2011-08-09 | 9 August–18 August, 2011 | Summer | 61 |
FR1-2011-10-17 | 17 October–27 October, 2011 | Autumn | 62 |
FR1-2011-12-28 | 28–31 December, 2011 1–8 January, 2012 | Winter | 59 |
FR1-2012-04-18 | 18 April–30 April, 2012 | Spring | 62 |
FR1-2012-08-19 | 19 August–4 September, 2012 | Summer | 55 |
FR1-2012-11-02 | 2 November–11 November, 2012 | Autumn | 61 |
FR1-2013-01-04 | 4 January–15 January, 2013 | Winter | 62 |
FR1-2013-05-08 | 8 May–18 May, 2013 | Spring | 62 |
FR1-2013-10-03 | 3 October–14 October, 2013 | Autumn | 61 |
Extracted Number | Correlation Coefficients | p | |||||||
---|---|---|---|---|---|---|---|---|---|
PP (A&T) | PP A | PP T | PP (A&T) | PP A | PP T | PP (A&T) | PP A | PP T | |
Years | 102 | 151 | 150 | 0.61 | 0.42 | 0.38 | <0.05 | <0.05 | <0.05 |
Spring | 18 | 26 | 23 | 0.74 | 0.55 | 0.46 | <0.05 | <0.05 | <0.05 |
Summer | 25 | 49 | 48 | 0.54 | 0.25 | 0.37 | <0.05 | <0.05 | <0.05 |
Autumn | 52 | 55 | 59 | 0.51 | 0.46 | 0.42 | <0.05 | <0.05 | <0.05 |
Winter | 7 | 21 | 20 | 0.33 | 0.14 | 0.07 | 0.31 | 0.22 | 0.41 |
RMSD | Bias | ||||||||
PP (A&T) | PP A | PP T | PP (A&T) | PP A | PP T | ||||
Years | 0.37 | 0.34 | 0.34 | −0.24 | −0.197 | −0.174 |
China Coast | Taiwan Strait | Northeast Upwelling | Kuroshio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | r2 | p | n | r2 | p | n | r2 | p | n | r2 | p | |
PPA&T | 3 | 0.16 | 0.51 | 39 | 0.08 | <0.05 | 12 | 0.01 | 0.79 | 48 | 0.02 | 0.07 |
PPA | 4 | 0.33 | 0.31 | 52 | 0.26 | <0.05 | 12 | 0.37 | <0.05 | 83 | 0.14 | <0.05 |
PPT | 3 | 0.44 | 0.54 | 50 | 0.04 | 0.09 | 14 | 0.01 | 0.7 | 83 | 0.02 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, K.-W.; Lian, L.-J.; Li, C.-H.; Hsiao, P.-Y.; Cheng, S.-Y. Validation of a Primary Production Algorithm of Vertically Generalized Production Model Derived from Multi-Satellite Data around the Waters of Taiwan. Remote Sens. 2020, 12, 1627. https://doi.org/10.3390/rs12101627
Lan K-W, Lian L-J, Li C-H, Hsiao P-Y, Cheng S-Y. Validation of a Primary Production Algorithm of Vertically Generalized Production Model Derived from Multi-Satellite Data around the Waters of Taiwan. Remote Sensing. 2020; 12(10):1627. https://doi.org/10.3390/rs12101627
Chicago/Turabian StyleLan, Kuo-Wei, Li-Jhih Lian, Chun-Huei Li, Po-Yuan Hsiao, and Sha-Yan Cheng. 2020. "Validation of a Primary Production Algorithm of Vertically Generalized Production Model Derived from Multi-Satellite Data around the Waters of Taiwan" Remote Sensing 12, no. 10: 1627. https://doi.org/10.3390/rs12101627
APA StyleLan, K. -W., Lian, L. -J., Li, C. -H., Hsiao, P. -Y., & Cheng, S. -Y. (2020). Validation of a Primary Production Algorithm of Vertically Generalized Production Model Derived from Multi-Satellite Data around the Waters of Taiwan. Remote Sensing, 12(10), 1627. https://doi.org/10.3390/rs12101627