Air Pollution Scenario over China during COVID-19
Abstract
:1. Introduction
2. Data Used and Methodology
3. Results
3.1. Changes in AOD Levels across China for the Whole COVID-19 Period, November 2019 to April 2020
3.2. Changes in NO2 Levels across China for the Whole COVID-19 Period, November 2019 to April 2020
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Myllivyrta, L. Air Pollution around Beijing Rebounds as Coal Consumption Rises by 13%. Unearthed, Greenpeace. Available online: https://unearthed.greenpeace.org/2019/05/22/air−pollution−china−beijing−coal−2018/ (accessed on 22 May 2019).
- USIEA. International Energy Outlook with Projections to 2050. Available online: https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf (accessed on 25 June 2020).
- Li, S.; Liu, Y.; Purevjav, A.-O.; Yang, L. Does subway expansion improve air quality? J. Environ. Econ. Manag. 2019, 96, 213–235. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Shi, A.; Huang, Y.; Yan, J.; Ni, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 2018. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, R.; Liu, Y.; Bi, J. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite−based perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Beirle, S.; Zhang, Q.; van der A, R.J.; Zheng, B.; Tong, D.; He, K. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015. Atmos. Chem. Phys. 2017, 17, 9261–9275. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Trentmann, J.; Pfeifroth, U.; Yuan, W.; Wild, M. Improvement of Air Pollution in China Inferred from Changes between Satellite−Based and Measured Surface Solar Radiation. Remote Sens. 2019, 11, 2910. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Yang, W. Evaluating China’s Air Pollution Control Policy with Extended AQI Indicator System: Example of the Beijing−Tianjin−Hebei Region. Sustainability 2019, 11, 939. [Google Scholar] [CrossRef] [Green Version]
- Wang, O. China’s capital shrouded in air pollution despite reduced emissions from coronavirus economic slowdown. South China Morning Post, 14 February 2020. [Google Scholar]
- WMO. Sand Dust Storm Occurs in North China, Inner Mongolia, China. World Meteorological Cnetre, Beijing. Available online: http://www.wmc−bj.net/publish/cms/view/836da450ddd74c98b5ca6ef6aa01a31f.html (accessed on 13 May 2020).
- Filonchyk, M.; Yan, H.; Zhang, Z.; Yang, S.; Li, W.; Li, Y. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Sci. Rep. 2019, 9, 6174. [Google Scholar] [CrossRef] [PubMed]
- Nichol, J.; Bilal, M. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 2016, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Arias, J.A.; Dudhia, J.; Gueymard, C.A.; Pozo-Vazquez, D. Assessment of the Level−3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modelling. Atmos. Chem. Phys. 2013, 13, 675–692. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.; Wang, L. New customized methods for improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol product. Remote Sens. Environ. 2017, 197, 115–124. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e−Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Monks, P. Coronavirus: Lockdown´s Effect on Air Pollution Provides Rare Glimpse of Low−Carbon Future. Available online: https://airqualitynews.com/2020/04/17/coronavirus−lockdowns−effect−on−air−pollution−provides−rare−glimpse−of−low−carbon−future/ (accessed on 19 April 2020).
- Shrestha, A.M.; Shrestha, U.B.; Sharma, R.; Bhattarai, S.; Tran, H.N.T.; Rupakheti, M. Lockdown caused by COVID−19 pandemic reduces air pollution in cities worldwide. Eartharxiv 2020. [Google Scholar] [CrossRef]
- O.A.G. Corinavirus Week 6: Capacity Recovers Slightly—or Does It? Available online: https://www.oag.com/blog/coronavirus−week−six (accessed on 26 February 2020).
- CNN. 780 Million People in China Are Living under Travel Restrictions Due to the Coronavirus Outbreak. Available online: https://edition.cnn.com/2020/02/16/asia/coronavirus−covid−19−death−toll−update−intl−hnk/index.html (accessed on 26 February 2020).
- Xin, Z.; Wang, O.; Tang, F. China coronavirus: Fears of economic contagion grow as cities turn into ghost towns. South China Morning Post, 29 January 2020. [Google Scholar]
- Bloomberg. China Pollution Levels Are Worst in Three Years. Bloomberg News, 13 February 2020. Available online: http://www.bloomberg.com/news/articles/2020−02−12/china−s−economic−shutdown−hasn−t−brought−blue−skies−to−beijing(accessed on 26 February 2020).
- Chang, Y.; Huang, R.-.J.; Ge, X.; Huang, X.; Hu, J.; Duan, Y.; Zou, Z.; Liu, X.; Lehmann, M.F. Puzzling haze events in China during the coronavirus (COVID−19) shutdown. Nat. Sci. Rev. 2020. [Google Scholar] [CrossRef]
- Ervens, B.; Turpin, B.J.; Weber, R.J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Lee, H.C.; Higurashi, A.; Takemura, T.; Song, C.H. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign. J. Geophys. Res. 2007. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Ren, C.; Nie, W.; Chi, X.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID−19 lockdown in China. EarthArXiv 2020. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Tang, A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze_fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef]
- Tan, J.; Duan, J.; Chen, D.; Wang, X.; Guo, S.; Bi, X.; Sheng, G.; He, K.; Fu, J. Chemical characteristics of haze during summer and winter in Guangzhou. Atmos. Res. 2009, 94, 238–245. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Sun, Y.; An, Z. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 2006, 40, 6579–6591. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Yang, L.; Gao, X.; Nie, W.; Yu, Y.; Xu, P.; Zhou, Y.; Wang, Z. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ. 2012, 63, 68–76. [Google Scholar] [CrossRef]
Station Name | No of Stations | Dense Urban | Sub-Urban | Industrial | Rural Background |
---|---|---|---|---|---|
Beijing | 12 | 5 | 5 | 2 | |
Tianjin | 15 | 11 | 1 | 3 | |
Nanning | 7 | 4 | 2 | 1 | 1 |
Urumqi | 8 | 6 | 2 |
Station | January 2019 | February 2019 | March 2019 | January 2020 | February 2020 | March 2020 | Relative% Change 2019–2020 | ||
---|---|---|---|---|---|---|---|---|---|
January–March | January–February | ||||||||
Beijing | PM2.5 NO2 | 50.6 47.7 | 50.9 33.4 | 51.8 37.6 | 58.6 39.2 | 62.7 25.8 | 34.8 23.7 | 1.8 –25.2 | 19.5 –19.8 |
Tianjin | PM2.5 NO2 | 82.0 61.8 | 82.1 44.7 | 54.4 45.1 | 102.6 60.0 | 61.6 33.1 | 43.1 37.3 | −5.1 –14.0 | 0 –12.6 |
Nanning (BGEZ) | PM2.5 NO2 | 36.3 35.4 | 31.0 21.6 | 31.7 32.6 | 31.5 23.2 | 35.3 16.5 | 25.5 22.7 | −6.8 –30.4 | 0 –30.3 |
Urumqi (UCSZ) | PM2.5 NO2 | 135.5 65.2 | 112.9 56.9 | 77.4 50.8 | 142.0 68.0 | 84.8 39.4 | 32.9 31.3 | −20.3 –19.8 | −8.7 –12.0 |
City | January–March | January–February |
---|---|---|
Beijing | −25.2 | −19.8 |
Tianjin | −14.0 | −12.6 |
Nanning | −30.4 | −30.3 |
Urumqi | −19.8 | −12.0 |
Wuhan | −45–1 | −36–7 |
Date | PM2.5 (µm−3) | RPC | O3 (µm−3) | RPC | RH (%) | RPC | |||
---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||||
2/10 | 25.48 | 122.86 | 382.14 | 63.77 | 82.32 | 29.08 | 17.4 | 37.8 | 117.24 |
2/11 | 36.68 | 181.23 | 394.08 | 64.27 | 103.93 | 61.72 | 16.2 | 48.8 | 201.23 |
2/12 | 29.10 | 208.39 | 616.07 | 71.80 | 126.91 | 76.77 | 47.2 | 47.2 | 0.00 |
2/13 | 22.65 | 203.40 | 798.07 | 63.31 | 124.15 | 96.09 | 12.4 | 80.4 | 548.39 |
3/8 | 56.65 | 100.13 | 76.75 | 89.08 | 100.25 | 12.54 | 19.6 | 93 | 374.49 |
3/25 | 22.72 | 120.34 | 429.64 | 95.16 | 129.83 | 36.43 | 6.4 | 37.8 | 490.63 |
3/30 | 5.20 | 70.07 | 1248.11 | 82.52 | 111.35 | 34.94 | 12.8 | 36.8 | 187.50 |
3/31 | 8.56 | 65.41 | 664.52 | 83.79 | 119.43 | 42.54 | 11.2 | 41.2 | 267.86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichol, J.E.; Bilal, M.; Ali, M.A.; Qiu, Z. Air Pollution Scenario over China during COVID-19. Remote Sens. 2020, 12, 2100. https://doi.org/10.3390/rs12132100
Nichol JE, Bilal M, Ali MA, Qiu Z. Air Pollution Scenario over China during COVID-19. Remote Sensing. 2020; 12(13):2100. https://doi.org/10.3390/rs12132100
Chicago/Turabian StyleNichol, Janet E., Muhammad Bilal, Md. Arfan Ali, and Zhongfeng Qiu. 2020. "Air Pollution Scenario over China during COVID-19" Remote Sensing 12, no. 13: 2100. https://doi.org/10.3390/rs12132100
APA StyleNichol, J. E., Bilal, M., Ali, M. A., & Qiu, Z. (2020). Air Pollution Scenario over China during COVID-19. Remote Sensing, 12(13), 2100. https://doi.org/10.3390/rs12132100