Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Climate Regions
3.2. Nonparametric Quantile Mapping and Bias Corrections
3.3. Low-Pass Quantile Mapping Filter
3.4. Evaluation Metrics
4. Results
4.1. Spatial Evaluations
4.2. Temporal Evaluations
5. Summary and Conclusions
- The QM bias correction approach is an effective method for the bias correction of satellite-based precipitation products upon availability of the ground-based precipitation observations.
- The QM method can be trained on historical data to effectively bias-correct future remotely sensed observations.
- The CCS have poor performances in representing the precipitation rates and patterns in the Northern part of Iran (CR6), and QM is not effective in bias-correcting the CCS in this region due to its orographic and climatic conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Stocker, E.; Bolvin, D.T.; Nelkin, E.J. Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. In Proceedings of the 12th Conference on Satellite Meteorology and Oceanography, Long Beach, CA, USA, 9–13 February 2003. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Gonzalez Miralles, D.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. USA Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar]
- Chen, K.; Guo, S.; Wang, J.; Qin, P.; He, S.; Sun, S.; Naeini, M.R. Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River. Water 2019, 11, 2539. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Tian, Y.; Yan, F.; Habib, E. An improved procedure for the validation of satellite-based precipitation estimates. Atmos. Res. 2015, 163, 61–73. [Google Scholar] [CrossRef]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Serrat-Capdevila, A.; Merino, M.; Valdes, J.B.; Durcik, M. Evaluation of the performance of three satellite precipitation products over Africa. Remote Sens. 2016, 8, 836. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies. Remote Sens. 2018, 10, 1074. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef] [Green Version]
- Sohn, B.J.; Han, H.-J.; Seo, E.-K. Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteorol. Climatol. 2010, 49, 701–714. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Ceccato, P.; Cressman, K.; Connor, S.J. Evaluating detection skills of satellite rainfall estimates over desert locust recession regions. J. Appl. Meteorol. Climatol. 2010, 49, 1322–1332. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Ruiz, F.; Connor, S.J.; Ceccato, P. Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteorol. Climatol. 2010, 49, 1004–1014. [Google Scholar] [CrossRef]
- Javanmard, S.; Yatagai, A.; Nodzu, M.I.; BodaghJamali, J.; Kawamoto, H. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM 3B42 over Iran. Adv. Geosci. 2010, 25. [Google Scholar] [CrossRef] [Green Version]
- Katiraie-Boroujerdy, P.-S.; Nasrollahi, N.; Hsu, K.-L.; Sorooshian, S. Evaluation of satellite-based precipitation estimation over Iran. J. Arid Environ. 2013, 97. [Google Scholar] [CrossRef] [Green Version]
- Katiraie-Boroujerdy, P.-S.; Akbari Asanjan, A.; Hsu, K.-L.; Sorooshian, S. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res. 2017, 193. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.; Sorooshian, S. Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set. Int. J. Climatol. 2019, 39, 3505–3522. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Osorio, J.D.G.; Galiano, S.G.G. Assessing uncertainties in the building of ensemble RCMs over Spain based on dry spell lengths probability density functions. Clim. Dyn. 2013, 40, 1271–1290. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Verbist, K.M.J. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile. J. Geophys. Res. Atmos. 2016, 121, 3790–3806. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, R.; Hsu, K.; Sorooshian, S. Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia. Arab. J. Geosci. 2018, 11, 508. [Google Scholar] [CrossRef] [Green Version]
- De Martonne, E. Treite de Geographie Physique, 7th ed.; Colin, Librairie Armand: Paris, France, 1948. [Google Scholar]
- Khalili, A.; Hajjam, S.; Irannejad, P. The General Model of Water and the Climate of Iran, The Fourth Part of Weather Division; Jamab: Tehran, Iran, 1991. [Google Scholar]
- Raziei, T.; Mofidi, A.; Santos, J.A.; Bordi, I. Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation. Int. J. Climatol. 2012, 32, 1226–1237. [Google Scholar] [CrossRef] [Green Version]
- Domroes, M.; Kaviani, M.; Schaefer, D. An analysis of regional and intra-annual precipitation variability over Iran using multivariate statistical methods. Theor. Appl. Climatol. 1998, 61, 151–159. [Google Scholar] [CrossRef]
- Modarres, R. Regional precipitation climates of Iran. J. Hydrol. (N. Z.) 2006, 13–27. [Google Scholar]
- Roushangar, K.; Alizadeh, F. A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique. J. Mt. Sci. 2018, 15, 1481–1497. [Google Scholar] [CrossRef]
- Raziei, T. An analysis of daily and monthly precipitation seasonality and regimes in Iran and the associated changes in 1951–2014. Theor. Appl. Climatol. 2018, 134, 913–934. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Raziei, T. A precipitation regionalization and regime for Iran based on multivariate analysis. Theor. Appl. Climatol. 2018, 131, 1429–1448. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100, ISBN 0123850223. [Google Scholar]
- Hong, Y.; Gochis, D.; Cheng, J.; Hsu, K.; Sorooshian, S. Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Mehran, A.; AghaKouchak, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Process. 2014, 28, 2262–2270. [Google Scholar] [CrossRef]
- Evans, J.P.; Smith, R.B. Water vapor transport and the production of precipitation in the eastern Fertile Crescent. J. Hydrometeorol. 2006, 7, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Behera, S.K.; Mujumdar, M.; Ohba, R.; Yamagata, T. Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon. Weather Rev. 2006, 134, 598–617. [Google Scholar] [CrossRef]
Gauge (mm/year) | CCS (mm/year) | CCS-BC (mm/year) | |
---|---|---|---|
CR1 | 294.1 | 318.6 | 284.5 |
CR2 | 333.2 | 643.7 | 297.8 |
CR3 | 246.4 | 593.5 | 239.1 |
CR4 | 407.7 | 442.0 | 366.6 |
CR5 | 118.1 | 237.1 | 121.7 |
CR6 | 882.2 | 752.6 | 653.7 |
CR7 | 160.3 | 476.7 | 173.3 |
Annual | Winter | Spring | Summer | Autumn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | ||
CR1 | CORR | 0.7038 | 0.7388 | 0.6389 | 0.6855 | 0.6242 | 0.5884 | 0.6920 | 0.6477 | 0.811 | 0.8236 |
RMSE | 7.1 | 6.7 | 4.15 | 3.65 | 4.49 | 2.55 | 1.39 | 0.27 | 1.67 | 1.54 | |
BIAS | 24.5 | −9.59 | −26.8 | −3.8 | 49.9 | −3.8 | 13 | −0.1 | −11.6 | −1.8 | |
CR2 | CORR | −0.193 | 0.0118 | −0.323 | −0.001 | −0.198 | −0.135 | 0.6465 | 0.6652 | −0.160 | 0.0793 |
RMSE | 38.5 | 14.6 | 17.4 | 5.5 | 17.2 | 5.4 | 2 | 2.4 | 4.9 | 4.6 | |
BIAS | 310.5 | −35.4 | 143.3 | 8.2 | 143.8 | −21.9 | 5.4 | −13.5 | 18.1 | −8.1 | |
CR3 | CORR | 0.3115 | 0.3470 | 0.0605 | 0.0852 | 0.4056 | 0.2947 | 0.4888 | 0.4995 | 0.4414 | 0.4783 |
RMSE | 28.7 | 8.3 | 10.6 | 3.3 | 14.5 | 3.3 | 1.4 | 1.2 | 3.2 | 2 | |
BIAS | 347.1 | −7.3 | 123.5 | 2.1 | 181.4 | −11.1 | 9.9 | −0.5 | 32.3 | 2.2 | |
CR4 | CORR | 0.0600 | 0.1816 | −0.097 | −0.059 | 0.1760 | 0.2295 | 0.5649 | 0.5469 | 0.3085 | 0.3770 |
RMSE | 8.8 | 8.2 | 4.3 | 4.1 | 4.1 | 2.9 | 0.4 | 0.2 | 2.3 | 2.1 | |
BIAS | 34.4 | −41.1 | 2.1 | −10.2 | 49.7 | −17 | 5.4 | 0.04 | −22.8 | −13.9 | |
CR5 | CORR | −0.090 | −0.062 | −0.107 | −0.081 | 0.0807 | 0.0837 | 0.6281 | 0.6037 | 0.1687 | 0.1893 |
RMSE | 19.2 | 10.4 | 8.1 | 6 | 9 | 3.3 | 3.8 | 0.9 | 2 | 1.6 | |
BIAS | 119 | 3.7 | 31.3 | 1.8 | 60.7 | 2 | 20.3 | −1.3 | 6.7 | 1.2 | |
CR6 | CORR | 0.4 | 0.2430 | 0.1082 | 0.2462 | 0.4733 | 0.4211 | −0.147 | −0.295 | 0.4043 | 0.2528 |
RMSE | 43.7 | 51.6 | 14 | 11.8 | 21.1 | 6.8 | 12.7 | 11.2 | 39.1 | 28.6 | |
BIAS | −129.5 | −228.4 | 36.6 | −31.9 | 164.7 | −24.8 | −86 | −59.6 | −244.8 | −112.1 | |
CR7 | CORR | 0.3708 | 0.5367 | 0.1843 | 0.3817 | 0.1895 | 0.2936 | 0.6939 | 0.7563 | 0.4585 | 0.6250 |
RMSE | 23.2 | 5.9 | 8.2 | 2.5 | 12 | 2.2 | 0.9 | 0.7 | 2.9 | 1.5 | |
BIAS | 316.4 | 13 | 110.1 | 6.3 | 165.4 | 3.3 | 7.5 | 0.4 | 33.5 | 3 |
Annual | Winter | Spring | Summer | Autumn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | ||
CR1 | CORR | 0.487 | 0.525 | 0.029 | 0.116 | 0.584 | 0.0.576 | −0.023 | −0.031 | 0.615 | 0.703 |
RMSE | 139.2 | 136.5 | 85.4 | 78.5 | 64.9 | 46.1 | 27.2 | 25.8 | 53.5 | 50.7 | |
BIAS | 10.8 | −19.7 | −42.2 | −16.7 | 44.6 | −17.1 | −2 | −5.1 | 10.3 | 19.2 | |
CR2 | CORR | −0.071 | 0.141 | −0.046 | 0.195 | 0.039 | 0.162 | 0.445 | 0.380 | −0.004 | 0.181 |
RMSE | 465 | 151.7 | 126.1 | 75.7 | 267.2 | 73.5 | 26 | 27.9 | 96.3 | 59.5 | |
BIAS | 420.9 | 21.8 | 91.6 | −38.2 | 254.6 | 42.7 | −0.6 | −12.5 | 75.3 | 29.8 | |
CR3 | CORR | −0.016 | 0.082 | −0.094 | −0.038 | 0.180 | 0.176 | 0.248 | 0.263 | 0.009 | 0.147 |
RMSE | 367.1 | 101 | 98.6 | 44.5 | 224.1 | 47.7 | 13.6 | 14.3 | 65.2 | 33.6 | |
BIAS | 343.5 | 5.7 | 82.9 | −15.4 | 216.1 | 23.8 | 0.8 | −5.7 | 43.7 | 2.9 | |
CR4 | CORR | 0.361 | 0.421 | 0.279 | 0.326 | 0.270 | 0.209 | 0.124 | 0.101 | 0.212 | 0.353 |
RMSE | 183.6 | 164 | 92.4 | 95.8 | 133.3 | 88.3 | 26.7 | 27.5 | 65.5 | 64.6 | |
BIAS | 73.2 | −5.2 | −38.8 | −48.4 | 108.7 | 31.4 | −4.7 | −8.1 | 7.9 | 20 | |
CR5 | CORR | −0.043 | −0.025 | −0.310 | −0.239 | 0.328 | 0.270 | 0.278 | 0.201 | 0.461 | 0.381 |
RMSE | 166.6 | 96.5 | 90.2 | 69.3 | 67.1 | 25.9 | 29.8 | 14.1 | 17.4 | 15.3 | |
BIAS | 117.7 | 11 | 47.3 | 12.7 | 52.5 | −3.3 | 10.7 | 0.5 | 7.2 | 1 | |
CR6 | CORR | 0.521 | 0.395 | 0.335 | 0.451 | 0.196 | 0.250 | 0.177 | −0.085 | 0.505 | 0.203 |
RMSE | 313.7 | 367.7 | 96.4 | 105.1 | 282.8 | 88.3 | 156.1 | 155.7 | 257.7 | 225.7 | |
BIAS | 4.9 | −145.5 | 1.9 | −60.9 | 272.2 | 65.9 | −89.7 | −81.6 | −179.5 | −68.9 | |
CR7 | CORR | 0.392 | 0.485 | 0.176 | 0.253 | 0.232 | 0.228 | 0.574 | 0.420 | 0.270 | 0.564 |
RMSE | 369 | 99.9 | 103.2 | 46.1 | 222.2 | 49.1 | 10.8 | 12.6 | 65.4 | 27.3 | |
BIAS | 384.9 | 18.5 | 87.4 | −4.3 | 211.2 | 14.1 | −0.8 | −3.9 | 51.1 | 12.5 |
Calibration | Validation | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | CR7 | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | CR7 | ||
RMSE (mm/day) | CCS | 2.11 | 3.64 | 2.79 | 2.25 | 1.44 | 6.90 | 2.21 | 2.77 | 3.28 | 3.90 | 2.81 | 1.33 | 6.39 | 2.60 |
CCS-BC | 1.95 | 1.79 | 1.65 | 2.18 | 1.15 | 5.52 | 1.11 | 2.57 | 2.17 | 2.11 | 2.68 | 1.13 | 5.08 | 1.28 | |
BIAS (mm/day) | CCS | 0.06 | 0.83 | 0.92 | 0.14 | 0.33 | −0.37 | 0.86 | 0.03 | 1.11 | 0.96 | 0.24 | 0.33 | 0.03 | 0.95 |
CCS-BC | −0.02 | −0.11 | −0.04 | −0.08 | 0.01 | −0.63 | 0.05 | −0.05 | 0.04 | 0.03 | 0.01 | 0.03 | −0.37 | 0.06 | |
CORR | CCS | 0.71 | 0.39 | 0.47 | 0.67 | 0.57 | 0.11 | 0.53 | 0.69 | 0.50 | 0.27 | 0.65 | 0.63 | 0.11 | 0.46 |
CCS-BC | 0.76 | 0.52 | 0.39 | 0.69 | 0.57 | 0.25 | 0.50 | 0.74 | 0.46 | 0.24 | 0.68 | 0.62 | 0.28 | 0.36 | |
FAR | CCS | 0.48 | 0.50 | 0.57 | 0.48 | 0.67 | 0.50 | 0.69 | 0.55 | 0.49 | 0.61 | 0.45 | 0.75 | 0.53 | 0.65 |
CCS-BC | 0.43 | 0.41 | 0.48 | 0.40 | 0.55 | 0.49 | 0.57 | 0.47 | 0.41 | 0.52 | 0.44 | 0.59 | 0.49 | 0.57 | |
POD | CCS | 0.85 | 0.83 | 0.79 | 0.79 | 0.82 | 0.50 | 0.88 | 0.75 | 0.85 | 0.91 | 0.75 | 0.70 | 0.52 | 0.86 |
CCS-BC | 0.80 | 0.61 | 0.55 | 0.73 | 0.60 | 0.43 | 0.62 | 0.70 | 0.69 | 0.59 | 0.65 | 0.60 | 0.48 | 0.54 | |
HSS | CCS | 0.59 | 0.50 | 0.43 | 0.53 | 0.43 | 0.20 | 0.40 | 0.48 | 0.50 | 0.47 | 0.50 | 0.32 | 0.21 | 0.43 |
CCS-BC | 0.62 | 0.47 | 0.42 | 0.57 | 0.47 | 0.20 | 0.44 | 0.53 | 0.50 | 0.44 | 0.46 | 0.44 | 0.24 | 0.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katiraie-Boroujerdy, P.-S.; Rahnamay Naeini, M.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.-l.; Sorooshian, S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sens. 2020, 12, 2102. https://doi.org/10.3390/rs12132102
Katiraie-Boroujerdy P-S, Rahnamay Naeini M, Akbari Asanjan A, Chavoshian A, Hsu K-l, Sorooshian S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sensing. 2020; 12(13):2102. https://doi.org/10.3390/rs12132102
Chicago/Turabian StyleKatiraie-Boroujerdy, Pari-Sima, Matin Rahnamay Naeini, Ata Akbari Asanjan, Ali Chavoshian, Kuo-lin Hsu, and Soroosh Sorooshian. 2020. "Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran" Remote Sensing 12, no. 13: 2102. https://doi.org/10.3390/rs12132102
APA StyleKatiraie-Boroujerdy, P. -S., Rahnamay Naeini, M., Akbari Asanjan, A., Chavoshian, A., Hsu, K. -l., & Sorooshian, S. (2020). Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sensing, 12(13), 2102. https://doi.org/10.3390/rs12132102