A Practical Methodology for Generating High-Resolution 3D Models of Open-Pit Slopes Using UAVs: Flight Path Planning and Optimization
Abstract
:1. Introduction
2. High-Resolution Imaging
2.1. Photogrammetry
2.2. Flying Challenges in an Open-Pit Mine Environment
2.3. Ground Station Mobile Application
2.4. Validation of Images and Models
3. Materials and Methods
3.1. Experimental Study
3.2. Regression Model of Power Consumption for the DJI Mavic Pro
3.3. Model Validation
3.4. Path Optimization
3.4.1. Fitness Function
3.4.2. Chromosome Structure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Life As a Drone Pilot. Available online: https://www.riotinto.com/en/news/stories/life-as-drone-pilot (accessed on 23 April 2020).
- Knox, F. How Drones Are Changing Mining. Available online: https://www.bhp.com/media-and-insights/prospects/2017/04/how-drones-are-changing-mining/ (accessed on 23 April 2020).
- Newmont. Newmont 2017 Sustainability Report. Available online: https://www.newmont.com/files/doc_downloads/newmont_archive/Newmont_2017-Beyond-the-Mine-Full-Report.pdf (accessed on 23 April 2020).
- Airware Blog Barrick Nevada’s Surveying Team Integrates Airware into Daily Goldstrike Operations. Available online: https://www.owler.com/reports/airware/airware-blog-barrick-nevada-s-surveying-team-integ/1532558691413 (accessed on 23 April 2020).
- Tournaire, O.; Paparoditis, N. A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images. ISPRS J. Photogramm. Remote Sens. 2009, 64, 621–631. [Google Scholar] [CrossRef]
- Valencia, J.; Battulwar, R.; Naghadehi, M.Z.; Sattarvand, J. Enhancement of explosive energy distribution using UAVs and machine learning. In Proceedings of the 39th International Symposium on Application of Computers and Operations Research in the Mineral Industry, Wroclaw, Poland, 4–6 June 2019; pp. 670–677. [Google Scholar]
- Yan, G.; Li, L.; Coy, A.; Mu, X.; Chen, S.; Xie, D.; Zhang, W.; Shen, Q.; Zhou, H. Improving the estimation of fractional vegetation cover from UAV RGB imagery by colour unmixing. ISPRS J. Photogramm. Remote Sens. 2019, 158, 23–34. [Google Scholar] [CrossRef]
- Hasan, S.; Montzka, C.; Rüdiger, C.; Ali, M.; Bogena, H.R.; Vereecken, H. Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. ISPRS J. Photogramm. Remote Sens. 2014, 91, 59–71. [Google Scholar] [CrossRef]
- Hannon, J. Slope Stability Radar. Bachelor’s Thesis, Queen’s University, Kingston, ON, Canada, 2007. [Google Scholar]
- Battulwar, R.; Winkelmaier, G.; Valencia, J.; Bahram, P.; Sattarvand, J. High-Resolution modeling of open-pit slopes using UAV and photogrammetry. In Proceedings of the 39th International Symposium on Application of Computers and Operations Research in the Mineral Industry, Wroclaw, Poland, 4–6 June 2019; pp. 661–670. [Google Scholar]
- Winkelmaier, G.; Battulwar, R.; Khoshdeli, M.; Valencia, J.; Sattarvand, J.; Bahram, P. Topographically Guided UAV for Identifying Tension Cracks using Image-Based Analytics in Open-Pit Mines. IEEE J. Trans. Ind. Eng. 2020. [Google Scholar] [CrossRef]
- Abe, J.; Marzolff, I.; Ries, J. Small-Format Aerial Photography; Elsevier Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Suziedelyte Visockiene, J.; Puziene, R.; Stanionis, A.; Tumeliene, E. Unmanned Aerial Vehicles for Photogrammetry: Analysis of Orthophoto Images over the Territory of Lithuania. Int. J. Aerosp. Eng. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Di Franco, C.; Buttazzo, G. Coverage Path Planning for UAVs Photogrammetry with Energy and Resolution Constraints. J. Intell. Robot. Syst. Theory Appl. 2016, 83, 445–462. [Google Scholar] [CrossRef]
- Torres, M.; Pelta, D.A.; Verdegay, J.L.; Torres, J.C. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction. Expert Syst. Appl. 2016, 55, 441–451. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2004; Volume 2, ISBN 0521540518. [Google Scholar]
- Lucieer, A.; Robinson, S.; Turner, D. Unmanned aerial vehicle (UAV) remote sensing for hyperspatial terrain mapping of antarctic moss beds based on structure from motion (SfM) point clouds. In Proceedings of the 34th International Symposium on Remote Sensing of Environment—The GEOSS Era: Towards Operational Environmental Monitoring, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-Ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Agisoft. Agisoft Metashape. Available online: https://www.agisoft.com/ (accessed on 23 April 2020).
- USGS. USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevationshuttleradartopographymissionsrtm1arc?qtscience_center_objects=0#qtscience_center_objects (accessed on 23 April 2020).
- NASA ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer. Available online: https://asterweb.jpl.nasa.gov/ (accessed on 23 April 2020).
- JAXA ALOS Global Digital Surface Model “ALOS World 3D—30m” (AW3D30). Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm (accessed on 23 April 2020).
- DJI. DJI Developer. Available online: https://developer.dji.com/ (accessed on 23 April 2020).
- Google Maps SDK for Android. Available online: https://developers.google.com/maps/documentation/android-sdk/intro (accessed on 23 April 2020).
- DJI. DJI Mavic Pro—Specs, Tutorials & Guides. Available online: https://www.dji.com/mavic/info (accessed on 23 April 2020).
- PIX4D How to Verify That There Is Enough Overlap between the Images. Available online: https://support.pix4d.com/hc/en-us/articles/203756125-How-to-verify-that-there-is-enough-overlap-between-the-images (accessed on 23 April 2020).
- Battulwar, R. Flight Path Planning and Optimization for High-Resolution Imaging in Open Pit Mines by UAVs. Master’s Thesis, University of Nevada Reno, Reno, NV, USA, 2018. [Google Scholar]
- Hussain, A.; Muhammad, Y.S.; Nauman Sajid, M.; Hussain, I.; Mohamd Shoukry, A.; Gani, S. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator. Comput. Intell. Neurosci. 2017, 2017, 7430125. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.; Toulouse, G. Configuration space analysis of travelling salesman problems. J. Phys. 1985, 46, 1277–1292. [Google Scholar] [CrossRef]
- Bhide, S.; John, N.; Kabuka, M.R. A Boolean Neural Network Approach for the Traveling Salesman Problem. IEEE Trans. Comput. 1993, 42, 1271–1278. [Google Scholar] [CrossRef]
- Glover, F. Artificial intelligence, heuristic frameworks and tabu search. Manag. Decis. Econ. 1990, 11, 365–375. [Google Scholar] [CrossRef]
- Miller, C.E.; Zemlin, R.A.; Tucker, A.W. Integer Programming Formulation of Traveling Salesman Problems. J. ACM 1960, 7, 326–329. [Google Scholar] [CrossRef]
- Meneses, S.; Cueva, R.; Tupia, M.; Guanira, M. A genetic algorithm to solve 3D traveling salesman problem with initial population based on a GRASP algorithm. J. Comput. Methods Sci. Eng. 2017, 17, s1–s10. [Google Scholar] [CrossRef]
- Ergezer, H.; Leblebicioglu, M.K. 3D Path Planning for UAVs for Maximum Information Collection. In Proceedings of the 2013 International Conference On Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 79–88. [Google Scholar]
- Besada-Portas, E.; De La Torre, L.; De La Cruz, J.M.; De Andrés-Toro, B. Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 2010, 26, 619–634. [Google Scholar] [CrossRef]
- Pehlivanoglu, Y.V.; Hacioglu, A. Vibrational genetic algorithm based path planner for autonomous UAV in spatial data based environments. In Proceedings of the 3rd International Conference on Recent Advances in Space Technologies, RAST 2007, Istanbul, Turkey, 14–16 June 2007; pp. 573–578. [Google Scholar]
- Kim, E.; Lee, J.; Shin, K.G. Real-Time prediction of battery power requirements for electric vehicles. In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, ICCPS 2013, Philadelphia, PA, USA, 8–11 April 2013; pp. 11–20. [Google Scholar]
- Cappiello, A.; Chabini, I.; Nam, E.K.; Luè, A.; Abou Zeid, M. A statistical model of vehicle emissions and fuel consumption. In Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, Singapore, 6 September 2002; pp. 801–809. [Google Scholar]
- Tseng, C.-M.; Chau, C.-K.; Elbassioni, K.; Khonji, M. Autonomous Recharging and Flight Mission Planning for Battery-operated Autonomous Drones. arXiv 2017, arXiv:1703.10049. [Google Scholar]
- FAA Remote Pilot—Small Unmanned Aircraft Systems Study Guide. Available online: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/remote_pilot_study_guide.pdf (accessed on 23 April 2020).
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing Co.: Boston, MA, USA, 1989; ISBN 978-0-201-15767-3. [Google Scholar]
- Larrañaga, P.; Kuijpers, C.M.H.; Murga, R.H.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artif. Intell. Rev. 1999, 13, 129–170. [Google Scholar] [CrossRef]
- MathWorks MATLAB—MathWorks—MATLAB & Simulink. Available online: https://www.mathworks.com/products/matlab.html (accessed on 21 April 2020).
- Lee, S.; Choi, Y. Topographic Survey at Small-Scale Open-Pit Mines using a Popular Rotary-Wing Unmanned Aerial Vehicle (Drone). J. Korean Soc. Rock Mech. 2015, 25, 462–469. [Google Scholar] [CrossRef]
- Al-Rawabdeh, A.; He, F.; Moussa, A.; El-Sheimy, N.; Habib, A. Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition. Remote Sens. 2016, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Car, M.; Juric Kacunic, D.; Kovacevic, M.S. Application of unmanned aerial vehicle for landslide mapping. In Proceedings of the International Symposium on Engineering Geodesy—SIG 2016, Varaždin, Croatia, 20–22 May 2016; pp. 549–559. [Google Scholar]
- Suh, J.; Choi, Y. Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ. Earth Sci. 2017, 76, 144. [Google Scholar] [CrossRef]
- Zare Naghadehi, M.; Jimenez, R.; KhaloKakaie, R.; Jalali, S.-M.E. A new open-pit mine slope instability index defined using the improved rock engineering systems approach. Int. J. Rock Mech. Min. Sci. 2013, 61, 1–14. [Google Scholar] [CrossRef]
- Zare Naghadehi, M.; Jimenez, R. On the Development of a Slope Instability Index for Open-Pit Mines using an Improved Systems Approach. In Proceedings of the 2015 ISRM Regional Symposium—EUROCK 2015, Salazburg, Austria, 7–10 October 2015; pp. 1041–1046. [Google Scholar]
- Li, C.J.; Ling, H. High-Resolution, downward-looking radar imaging using a small consumer drone. In Proceedings of the 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016, Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 2037–2038. [Google Scholar]
- Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Shivgan, R.; Dong, Z. Energy-Efficient Drone Coverage Path Planning using Genetic Algorithm. In Proceedings of the 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), Newark, NJ, USA, 11–14 May 2020; pp. 1–6. [Google Scholar]
Flight Time | 27 min | Image | 4000 × 3000 px |
Navigation | GPS + GLONASS | Weight | 734 g |
Battery | 3830 mAh, 11.4 v | Charging Time | 45 min |
Max. Altitude | 120 m | Max. Speed | 40 mph |
Parameters | Stage 1 | Stage 2 | Parameters | Stage 1 | Stage 2 |
---|---|---|---|---|---|
Altitude (AGL) | 60 m | 36.5 m | Forward Overlap | 80 | 80 |
Area | 0.0658 km2 | 0.0104 km2 | Side Overlap | 80 | 80 |
Max. Speed | 7 m/s | 5 m/s | Terrain-Awareness | No | Yes |
Flight Time | 15 min | 7 min | No. of Images | 119 | 84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battulwar, R.; Winkelmaier, G.; Valencia, J.; Naghadehi, M.Z.; Peik, B.; Abbasi, B.; Parvin, B.; Sattarvand, J. A Practical Methodology for Generating High-Resolution 3D Models of Open-Pit Slopes Using UAVs: Flight Path Planning and Optimization. Remote Sens. 2020, 12, 2283. https://doi.org/10.3390/rs12142283
Battulwar R, Winkelmaier G, Valencia J, Naghadehi MZ, Peik B, Abbasi B, Parvin B, Sattarvand J. A Practical Methodology for Generating High-Resolution 3D Models of Open-Pit Slopes Using UAVs: Flight Path Planning and Optimization. Remote Sensing. 2020; 12(14):2283. https://doi.org/10.3390/rs12142283
Chicago/Turabian StyleBattulwar, Rushikesh, Garrett Winkelmaier, Jorge Valencia, Masoud Zare Naghadehi, Bijan Peik, Behrooz Abbasi, Bahram Parvin, and Javad Sattarvand. 2020. "A Practical Methodology for Generating High-Resolution 3D Models of Open-Pit Slopes Using UAVs: Flight Path Planning and Optimization" Remote Sensing 12, no. 14: 2283. https://doi.org/10.3390/rs12142283
APA StyleBattulwar, R., Winkelmaier, G., Valencia, J., Naghadehi, M. Z., Peik, B., Abbasi, B., Parvin, B., & Sattarvand, J. (2020). A Practical Methodology for Generating High-Resolution 3D Models of Open-Pit Slopes Using UAVs: Flight Path Planning and Optimization. Remote Sensing, 12(14), 2283. https://doi.org/10.3390/rs12142283