Elucidating the Life Cycle of Warm-Season Mesoscale Convective Systems in Eastern China from the Himawari-8 Geostationary Satellite
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Study Area
2.2. Identification of MCS Extent and Internal Structures
2.3. Determination of MCS Life Stages
3. Results
3.1. Precipitation Probability of MCSs from AHI/HW8
3.2. Life Cycle of MCSs from AHI/HW8
3.3. Features of MCS Initiation
3.4. Internal Structures of the MCS during Lifetime
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houze, R.A.J. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 1993; p. 573. [Google Scholar]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology. In Midlatitudes; Wiley: Hoboken, NJ, USA, 2010; p. 430. [Google Scholar]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.L.; Chaplin, M.M.; Zuluaga, M.D.; Houze, R.A. Contribution of Extreme Convective Storms to Rainfall in South America. J. Hydrometeorol. 2016, 17, 353–367. [Google Scholar] [CrossRef]
- Romero, R.; Doswell, C.A.; Ramis, C. Mesoscale Numerical Study of Two Cases of Long-Lived Quasi-Stationary Convective Systems over Eastern Spain. Mon. Weather Rev. 2000, 128, 3731–3751. [Google Scholar] [CrossRef]
- Salio, P.; Nicolini, M.; Zipser, E.J. Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Weather Rev. 2007, 135, 1290–1309. [Google Scholar] [CrossRef] [Green Version]
- Romatschke, U.; Houze, R.A. Extreme summer convection in South America. J. Climatol. 2010, 23, 3761–3791. [Google Scholar] [CrossRef]
- Jackson, B.; Nicholson, S.E.; Klotter, D. Mesoscale Convective Systems over Western Equatorial Africa and Their Relationship to Large-Scale Circulation. Mon. Weather Rev. 2009, 137, 1272–1294. [Google Scholar] [CrossRef]
- Seastrand, S.; Serra, Y.; Castro, C.; Ritchie, E. The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol. 2015, 35, 2019–2032. [Google Scholar] [CrossRef]
- Fuhrer, O.; Embedded, C.S. Cellular Convection in Moist Flow past Topography. J. Atmos. Sci. 2005, 62, 2810–2828. [Google Scholar] [CrossRef]
- Wang, C.C.; Chen, T.J.; Chen, T.C.; Tsuboki, K. A numerical study on the effects of Taiwan topography on a convective line during the mei-yu season. Mon. Weather Rev. 2005, 133, 3217–3242. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Zuluaga, M.D.; Houze, J.R.A. Severe convection and lightning in subtropical South America. Geophys. Res. Lett. 2014, 41, 7359–7366. [Google Scholar] [CrossRef]
- Yang, Q.; Houze, R.A.; Leung, L.R.; Feng, Z. Environments of Long-lived Mesoscale Convective Systems over the Central United States in Convection Permitting Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 13288–13307. [Google Scholar] [CrossRef] [Green Version]
- Carbone, R.E.; Tuttle, J.D.; Ahijevych, D.A.; Trier, B.S. Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci. 2002, 59, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.W. The Life Cycles of GATE Convective Systems. J. Atmos. Sci. 1978, 35, 1256–1264. [Google Scholar] [CrossRef]
- Esbensen, S.K.; Wang, J.; Tollerud, E.I. A Composite Life Cycle of Nonsquall Mesoscale Convective Systems over the Tropical Ocean. Part II: Heat and Moisture Budgets. J. Atmos. Sci. 1988, 45, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Kuettner, J.P.; Parker, D.E.; Rodenhuis, D.R.; Hoeber, H.; Kraus, H.; Philander, G. GATE: Final international scientific plans. Bull. Am. Meteorol. Soc. 1974, 55, 711–744. [Google Scholar] [CrossRef]
- Leary, C.A.; Houze, R.A. The Structure and Evolution of Convection in a Tropical Cloud Cluster. J. Atmos. Sci. 1979, 36, 437–457. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A.J. Cloud clusters and large-scale vertical motions in the tropics. J. Meteorol. Soc. Jpn. 1982, 60, 396–410. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.M.V.; Jones, C. A satellite method to identify structural properties of mesoscale convective systems based on maximum spatial correlation tracking technique (MASCOTTE). J. Appl. Meteorol. 2001, 40, 1683–1701. [Google Scholar] [CrossRef] [Green Version]
- Vila, D.A.; Machado, L.A.T.; Laurent, H.; Velasco, I. Forecast and tracking the evolution of cloud clusters (fortracc) using satellite infrared imagery: Methodology and validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
- Goyens, C.; Lauwaet, D.; Schröder, M.; Demuzere, M.; van Lipzig, N.P.M. Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation. Int. J. Climatol. 2012, 32, 1921–1934. [Google Scholar] [CrossRef] [Green Version]
- Pope, M.; Jakob, C.; Reeder, M.J. Convective Systems of the North Australian Monsoon. J. Clim. 2008, 21, 5091–5112. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.A.T.; Laurent, H. The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence. Mon. Weather Rev. 2004, 132, 714–725. [Google Scholar] [CrossRef]
- Ai, Y.F.; Li, W.B.; Meng, Z.Y.; Li, J. Life cycle characteristics of MCSs in middle east China tracked by geostationary satellite and precipitation estimates. Mon. Weather Rev. 2016, 144, 2517–2530. [Google Scholar] [CrossRef]
- Feng, Z.; Dong, X.; Xi, B.; McFarlane, S.A.; Kennedy, A.; Lin, B.; Minnis, P. Life cycle of midlatitude deep convective systems in a Lagrangian framework. J. Geophys. Res. Atmos. 2012, 117, D23201. [Google Scholar] [CrossRef]
- Feng, Z.; Houze, R.A., Jr.; Leung, L.R.; Song, F.; Hardin, J.C.; Wang, J.; Homeyer, C.R. Spatiotemporal Characteristics and Large-scale Environments of Mesoscale Convective Systems East of the Rocky Mountains. J. Clim. 2019, 32, 7303–7328. [Google Scholar] [CrossRef] [Green Version]
- Futyan, J.M.; del Genio, A.D. Deep Convective System Evolution over Africa and the Tropical Atlantic. J. Clim. 2007, 20, 5041–5060. [Google Scholar] [CrossRef]
- Fiolleau, T.; Roca, R. Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: Method and sampling considerations. Q. J. R. Meteorol. Soc. 2013, 139, 941–953. [Google Scholar] [CrossRef]
- Zhang, A.; Fu, Y. Life-cycle effects on the vertical structure of precipitation in east china measured by Himawari-8 and GPM DPR. Mon. Weather Rev. 2018, 146, 2183–2199. [Google Scholar] [CrossRef]
- Bouniol, D.; Roca, R.; Fiolleau, T.; Poan, D.E. Macrophysical, Microphysical, and Radiative Properties of Tropical Mesoscale Convective Systems over Their Life Cycle. J. Clim. 2016, 29, 3353–3371. [Google Scholar] [CrossRef]
- Xu, W.; Zipser, E.J. Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Clim. 2011, 24, 448–465. [Google Scholar] [CrossRef]
- Meng, Z.; Yan, D.; Zhang, Y. General features of squall lines in East China. Mon. Weather. Rev. 2013, 141, 1629–1647. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, D.L.; Zhang, C.H.; Wang, Y.Q. Synoptic control of convective rainfall rates and cloud to ground lightning frequencies in warm-season mesoscale convective systems over north China. Mon. Weather Rev. 2018, 146, 813–831. [Google Scholar] [CrossRef]
- Chen, D.; Guo, J.; Yao, D.; Lin, Y.; Zhao, C.; Min, M.; Zhai, P. Mesoscale convective systems in the Asian monsoon region from Advanced Himawari Imager: Algorithms and preliminary results. J. Geophys. Res. Atmos. 2019, 124, 2210–2234. [Google Scholar] [CrossRef] [Green Version]
- Da, C. Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett. 2015, 6, 637–646. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Guo, J.; Wang, H.; Li, J.; Min, M.; Zhao, W.; Yao, D. The cloud top distribution and diurnal variation of clouds over East Asia: Preliminary results from Advanced Himawari Imager. J. Geophys. Res. Atmos. 2018, 123, 3724–3739. [Google Scholar] [CrossRef]
- Xue, M.; Droegemeier, K.K.; Wong, V. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys. 2000, 75, 161–193. [Google Scholar] [CrossRef]
- Steinfeld, B.; Scott, J.; Vilander, G.; Marx, L.; Quirk, M.; Lindberg, J.; Koerner, K. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteorol. Atmos. Phys. 2001, 76, 143–165. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J.J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Yuan, J.; Houze, R.A. Global variability of mesoscale convective system anvil structure from A-train satellite data. J. Clim. 2010, 23, 5864–5888. [Google Scholar] [CrossRef]
- Tobin, I.; Bony, S.; Roca, R. Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation. J. Clim. 2012, 25, 6885–6904. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Dong, X.; Xi, B.; Schumacher, C.; Minnis, P.; Khaiyer, M. Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Steiner, M.; Houze, R.A.; Yuter, S.E. Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteorol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Feng, Z.; Leung, L.R.; Houze Jr, R.A.; Hagos, S.; Hardin, J.; Yang, Q.; Fan, J. Structure and Evolution of Mesoscale Convective Systems: Sensitivity to Cloud Microphysics in Convection-Permitting Simulations Over the United States. J. Adv. Model. Earth Syst. 2018, 10, 1470–1494. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Shao, Q.; Hao, Z.C.; Chen, X.; Zhang, Z.; Xu, C.Y.; Sun, L. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J. Hydrol. 2010, 380, 386–405. [Google Scholar] [CrossRef]
- Nauss, T.; Kokhanovsky, A.A. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys. 2006, 6, 5031–5036. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Dong, X.; Xi, B.; Li, M. Cloud and Precipitation Properties of MCSs Along the Meiyu Frontal Zone in Central and Southern China and Their Associated Large-Scale Environments. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Song, F.; Feng, Z.; Ruby, L.R.; Houze, R.A. Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the US Great Plains. J. Clim. 2019, 32, 6749–6767. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Rossow, W.B.; Guedes, R.L.; Walker, A.W. Life Cycle Variations of Mesoscale Convective Systems over the Americas. Mon. Weather Rev. 1998, 126, 1630–1654. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M.; Paech, S.J.; Litten, A.L. A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Weather Rev. 2008, 136, 4899–4914. [Google Scholar] [CrossRef] [Green Version]
- Weckwerth, T.M.; Parsons, D.B. A Review of Convection Initiation and Motivation for IHOP_2002. Mon. Weather Rev. 2006, 134, 5–22. [Google Scholar] [CrossRef]
- Bai, L.; Meng, Z.; Huang, Y.; Zhang, Y.; Niu, S.; Su, T. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study. J. Geophys. Res. Atmos. 2019, 124, 2379–2396. [Google Scholar] [CrossRef]
- Ding, Y.H. Monsoons over China; Kluwer Acad.: Dordrecht, The Netherlands, 1994; p. 419. [Google Scholar]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Min, M.; Zhang, Z. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. Transf. 2014, 142, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Zhou, T.; Xiong, A.; Zhu, Y.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 34, L01704. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhai, P.; Wu, L.; Cribb, M.; Li, Z.; Ma, Z.; Wang, F.; Chu, D.; Wang, P.; Zhang, J. Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol. 2014, 34, 2940–2956. [Google Scholar] [CrossRef]
- Argueso, D.; Romero, R.; Homar, V. Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models. J. Climat. 2020, 33, 2449–2466. [Google Scholar] [CrossRef]
- Houze, R.A.J. Mesoscale convective systems. Rev. Geophys. 2004, 42, RG4003. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Guo, J.; Yao, D.; Feng, Z.; Lin, Y. Elucidating the Life Cycle of Warm-Season Mesoscale Convective Systems in Eastern China from the Himawari-8 Geostationary Satellite. Remote Sens. 2020, 12, 2307. https://doi.org/10.3390/rs12142307
Chen D, Guo J, Yao D, Feng Z, Lin Y. Elucidating the Life Cycle of Warm-Season Mesoscale Convective Systems in Eastern China from the Himawari-8 Geostationary Satellite. Remote Sensing. 2020; 12(14):2307. https://doi.org/10.3390/rs12142307
Chicago/Turabian StyleChen, Dandan, Jianping Guo, Dan Yao, Zhe Feng, and Yanluan Lin. 2020. "Elucidating the Life Cycle of Warm-Season Mesoscale Convective Systems in Eastern China from the Himawari-8 Geostationary Satellite" Remote Sensing 12, no. 14: 2307. https://doi.org/10.3390/rs12142307
APA StyleChen, D., Guo, J., Yao, D., Feng, Z., & Lin, Y. (2020). Elucidating the Life Cycle of Warm-Season Mesoscale Convective Systems in Eastern China from the Himawari-8 Geostationary Satellite. Remote Sensing, 12(14), 2307. https://doi.org/10.3390/rs12142307