Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion
Abstract
:1. Introduction
2. Data
2.1. Reference Datasets
2.2. Landsat 8 Operational Land Imager (OLI)
2.3. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR)
2.4. Land Cover Data
2.5. Global Forest Change
2.6. Leaf Area Index
2.7. Burned Area and Soil Data
3. Methods
3.1. AGB Estimation Using Allometric Models
3.2. Biomass and Carbon Mapping
3.3. Forest Loss Mapping
3.4. Carbon Cycle Analyses: CARbon DAta MOdel fraMework (CARDAMOM)
4. Results
4.1. Biomass Carbon Stocks
4.2. Deforestation and Carbon Loss
4.3. Ecosystem Carbon Cycling Properties and Dynamics
5. Discussion
5.1. Biomass Carbon Stocks
5.2. Deforestation and Carbon Loss
5.3. Ecosystem Carbon Cycling Properties and Dynamics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Methods
Appendix A.1. AGB Estimation Using Allometric Models
Appendix A.2. K-Fold Cross Validation and AGB Error Mapping
Appendix A.3. Error Characterization for Vegetation Type/National Level
Appendix A.4. Accuracy Assessment
Appendix B. Additional Results
AGBC Range | NFI Plots | GLAS Footprints | NFI Clusters | ||||||
---|---|---|---|---|---|---|---|---|---|
MBD | RMSD | CVbias | MBD | RMSD | CVbias | MBD | RMSD | CVbias | |
0–15 | 13.8 | 23.2 | 1.4 | 17.0 | 20.3 | 0.7 | 6.8 | 9.2 | 0.9 |
15–30 | 11.3 | 22.0 | 1.7 | 7.5 | 14.0 | 1.6 | 2.0 | 7.2 | 3.4 |
30–45 | 15.1 | 26.8 | 1.5 | 23.1 | 25.4 | 0.5 | 8.7 | 17.1 | 1.7 |
45–60 | 12.7 | 34.5 | 2.5 | 4.4 | 17.1 | 3.8 | 12.4 | 18.6 | 1.1 |
60–75 | −14.2 | 27.3 | 1.6 | 0.2 | 29.2 | 145.0 | 3.6 | 8.0 | 2.0 |
75–90 | −21.7 | 33.8 | 1.2 | −17.3 | 17.7 | 0.2 | 9.0 | 24.0 | 2.5 |
90–105 | −33.0 | 34.7 | 0.3 | −49.4 | 49.8 | 0.1 | −29.4 | 44.0 | 1.1 |
105–120 | −28.1 | 45.9 | 1.3 | −98.1 | 106.0 | 0.4 | |||
120–135 | 7.2 | 11.6 | 1.3 | ||||||
135–150 | −84.1 | 88.6 | 0.3 | ||||||
>150 | −112.1 | 117.7 | 0.3 |
AGBC Map | R2 | MBD (t C ha−1) | MAD (t C ha−1) | RMSD (t C ha−1) |
---|---|---|---|---|
This study | 0.49 | 0.74 | 19.30 | 31.17 |
Avitabile et al. (2016) | 0.44 | −10.51 | 22.22 | 35.80 |
Saatchi et al. (2011) | 0.32 | −5.70 | 23.32 | 36.29 |
Baccini et al. (2012) | 0.47 | 4.87 | 22.39 | 33.08 |
Santoro et al. (2018) | 0.36 | −2.44 | 24.16 | 34.94 |
Class | Standard Error (SE) |
---|---|
Stable Forest (SF) | 0.00% |
Stable Other Vegetation (SOV) | 6.19% |
Stable Other Land (SOL) | 19.07% |
Stable Water (SW) | 0.00% |
Forest Loss (Floss) | 0.00% |
Forest Loss Product | Commission Error (%) | Omission Error (%) |
---|---|---|
GFC forest loss | 0 | 99 |
This study | 3 | 0 |
References
- FAO. Global Forest Resources Assessment 2015; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- GoK. National Strategy for Achieving and Maintaining over 10% Tree Cover by 2022; Government of Kenya, Ministry of Environment and Forestry: Nairobi, Kenya, 2019; p. 66.
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SLEEK. System for Land-Based Emissions Estimation in Kenya Programme; Government of Kenya (GoK): Nairobi, Kenya, 2010; Volume 2017.
- KFS. Kenya Forest Service (KFS)—History of Forestry in Kenya. Available online: http://www.kenyaforestservice.org/index.php?option=com_content&view=article&id=406&Itemid=563 (accessed on 14 March 2019).
- Peltorinne, P. The forest types of Kenya. Exped. Rep. Dep. Geogr. Univ. Hels. 2004, 40, 8–13. [Google Scholar]
- Stiebert, S.; Murphy, D.; Dion, J.; McFatridge, J. Kenya’s Climate Change Action Plan: Mitigation Chapter 4: Forestry. 2012. Available online: https://www.adaptation-undp.org/resources/naps-non-least-developed-countries-non-ldcs/kenya%E2%80%99s-national-climate-change-action-plan-%E2%80%93 (accessed on 15 May 2020).
- GoK. Second National Communication to the United Nations Framework Convention on Climate Change (UNFCCC); Government of Kenya, NEMA—National Environment Management Authority: Nairobi, Kenya, 2015.
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Woodward, I.; Lomas, M.; Delbart, N.; Picard, G. Relating radar remote sensing of biomass to modelling of forest carbon budgets. Clim. Chang. 2004, 67, 379–402. [Google Scholar] [CrossRef]
- Wagner, W.; Luckman, A.; Vietmeier, J.; Tansey, K.; Balzter, H.; Schmullius, C.; Davidson, M.; Gaveau, D.; Gluck, M.; Le Toan, T.; et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote Sens. Environ. 2003, 85, 125–144. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36, L23401. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Quegan, S.; Carreiras, J.; Persson, H.J.; Fransson, J.E.S.; Hoscilo, A.; Ziółkowski, D.; Stereńczak, K.; Lohberger, S.; Stängel, M.; et al. Forest biomass retrieval approaches from earth observation in different biomes. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 53–68. [Google Scholar] [CrossRef]
- Rodriguez-Veiga, P.; Saatchi, S.; Tansey, K.; Balzter, H. Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sens. Environ. 2016, 183, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Tsui, O.W.; Coops, N.C.; Wulder, M.A.; Marshall, P.L. Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass. Remote Sens. Environ. 2013, 139, 340–352. [Google Scholar] [CrossRef]
- Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J. A National Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.E.; Tomppo, E.O.; Finley, A.O.; Heikkinen, J. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sens. Environ. 2007, 111, 466–480. [Google Scholar] [CrossRef]
- Santoro, M. GlobBiomass—Global Datasets of Forest Biomass. PANGAEA 2018. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Heuvelink, G.B.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [Green Version]
- Mitchard, E.; Saatchi, S.; Baccini, A.; Asner, G.; Goetz, S.; Harris, N.; Brown, S. Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance Manag. 2013, 8, 10. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying Forest Biomass Carbon Stocks from Space. Curr. For. Rep. 2017, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Avitabile, V.; Herold, M.; Lewis, S.; Phillips, O.; Aguilar-Amuchastegui, N.; Asner, G.; Brienen, R.; DeVries, B.; Gatti, R.G.; Feldpausch, T.; et al. Comparative analysis and fusion for improved global biomass mapping. In Proceedings of the International Conference Global Vegetation Monitoring and Modeling (GV2M), Avignon, France, 3–7 Febtuty 2014; pp. 251–252. [Google Scholar]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Milodowski, D.; Mitchard, E.; Williams, M. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ. Res. Lett. 2017, 12, 094003. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.; Chen, Y.; Van Der Werf, G.; Rogers, B.; Morton, D. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, G04012. [Google Scholar] [CrossRef]
- McNicol, I.M.; Ryan, C.M.; Mitchard, E.T.A. Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. Nat. Commun. 2018, 9, 3045. [Google Scholar] [CrossRef] [PubMed]
- Smallman, T.L.; Williams, M. Description and validation of an intermediate complexity model for ecosystem photosynthesis and evapotranspiration: ACM-GPP-ETv1. Geosci. Model Dev. 2019, 12, 2227–2253. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Rastetter, E.B.; Fernandes, D.N.; Goulden, M.L.; Shaver, G.R.; Johnson, L.C. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 1997, 7, 882–894. [Google Scholar] [CrossRef]
- Friend, A.D.; Lucht, W.; Rademacher, T.T.; Keribin, R.; Betts, R.; Cadule, P.; Ciais, P.; Clark, D.B.; Dankers, R.; Falloon, P.D.; et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. USA 2014, 111, 3280–3285. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Schwarz, P.A.; Law, B.E.; Irvine, J.; Kurpius, M.R. An improved analysis of forest carbon dynamics using data assimilation. Glob. Chang. Biol. 2005, 11, 89–105. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Walker, A.P.; Dietze, M.C.; Wang, Y.P.; Luo, Y.; Jain, A.K.; El-Masri, B.; Hickler, T.; et al. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 2014, 203, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Smallman, T.; Exbrayat, J.F.; Mencuccini, M.; Bloom, A.; Williams, M. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests. J. Geophys. Res. Biogeosci. 2017, 122, 528–545. [Google Scholar] [CrossRef]
- Bloom, A.; Williams, M. Constraining ecosystem carbon dynamics in a data-limited world: Integrating ecological “common sense” in a model–data fusion framework. Biogeosciences 2015, 12, 1299–1315. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.A.; Exbrayat, J.-F.; Van Der Velde, I.R.; Feng, L.; Williams, M. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl. Acad. Sci. USA 2016, 113, 1285–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Exbrayat, J.-F.; Smallman, T.L.; Bloom, A.A.; Hutley, L.B.; Williams, M. Inverse determination of the influence of fire on vegetation carbon turnover in the pantropics. Glob. Biogeochem. Cycles 2018, 32. [Google Scholar] [CrossRef]
- Exbrayat, J.-F.; Bloom, A.A.; Carvalhais, N.; Fischer, R.; Huth, A.; MacBean, N.; Williams, M. Understanding the land carbon cycle with space data: Current status and prospects. Surv. Geophys. 2019, 40, 735–755. [Google Scholar] [CrossRef] [Green Version]
- KFS. Field Manual for Biophysical Forest Resources Assessment in Kenya. Improving Capacity in Forest Resources Assessment in Kenya (IC-FRA); Kenya Forest Service: Nairobi, Kenya, 2016. [Google Scholar]
- GoK. The National Forest Reference Level for REDD+ Implementation; Government of Kenya, Ministry of Environment and Forestry: Nairobi, Kenya, 2019; p. 100.
- Healey, S.; Patterson, P.; Saatchi, S.; Lefsky, M.; Lister, A.; Freeman, E. A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS). Carbon Balance Manag. 2012, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Healey, S.P.; Hernandez, M.W.; Edwards, D.P.; Lefsky, M.A.; Freeman, E.; Patterson, P.L.; Lindquist, E.J.; Lister, A.J. CMS: GLAS LiDAR-Derived Global Estimates of Forest Canopy Height, 2004–2008; ORNL DAAC: Oak Ridge, TN, USA, 2015. [Google Scholar] [CrossRef]
- Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37, L15401. [Google Scholar] [CrossRef] [Green Version]
- GoK. Technical Manual for Land Cover Change Mapping in Kenya; Ministry of Environment and Forestry, Government of Kenya: Nairobi, Kenya, 2019; p. 204.
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third NASA ERTS-1 Symposium, Washington, DC, USA, 1 January 1974; pp. 309–317. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (Savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Lopez, M.J.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int. 1991, 1, 31–37. [Google Scholar]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Shimada, M.; Isoguchi, O. JERS-1 SAR mosaics of Southeast Asia using calibrated path images. Int. J. Remote Sens. 2002, 23, 1507–1526. [Google Scholar] [CrossRef]
- Quegan, S.; Yu, J.J. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar] [CrossRef]
- Shimada, M.; (ALOS Kyoto & Carbon Initiative (K&C), (email)). Personal communication, 18 June 2019. Subject: [Z-ALOS-KC4-PI:00035] Report: Geometric Error of the JAXA 25 m Mosaic Group.
- Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme; IGES: Kanagawa, Japan, 2003. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Sterckx, S.; Benhadj, I.; Duhoux, G.; Livens, S.; Dierckx, W.; Goor, E.; Adriaensen, S.; Heyns, W.; Van Hoof, K.; Strackx, G.; et al. The PROBA-V mission: Image processing and calibration. Int. J. Remote Sens. 2014, 35, 2565–2588. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Carreiras, J.M.; Jones, J.; Lucas, R.M.; Shimabukuro, Y.E. Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data. Remote Sens. Environ. 2017, 194, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Muchiri, M.; Muga, M. A preliminary yield model for natural Yushania alpina Bamboo in Kenya. J. Nat. Sci. Res. 2013, 3, 77–84. [Google Scholar]
- Durán, S.M.; Gianoli, E. Carbon stocks in tropical forests decrease with liana density. Biol. Lett. 2013, 9, 20130301. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment (FRA) 2015 Country Report Kenya; United Nations Food and Agriculture Organization (FAO): Rome, Italy, 2014. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Exbrayat, J.-F.; Pitman, A.; Abramowitz, G. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model. Biogeosciences 2014, 11, 6999–7008. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Cartus, O.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Carvalhais, N.; Rozendaal, D.; Herold, M.; Avitabile, V.; Quegan, S.; et al. A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 18932. [Google Scholar]
- Bartholomé, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Coelho, M.S.; Machado, R.B.; Ferreira, M.E.; Aguiar, L.d.S.; Dirzo, R.; Scariot, A.; Lopes, C.R. Afforestation of savannas: An impending ecological disaster. Embrapa Recursos Genéticos e Biotecnologia-Artigo em periódico indexado (ALICE) 2016, 14, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.-F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Palmer, P.I.; Feng, L.; Baker, D.; Chevallier, F.; Bösch, H.; Somkuti, P. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 2019, 10, 3344. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Bowman, K.; Schimel, D.; Parazoo, N.; Jiang, Z.; Lee, M.; Bloom, A.; Wunch, D.; Frankenberg, C.; Sun, Y. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 2017, 358, eaam5690. [Google Scholar] [CrossRef] [Green Version]
- Mitchard, E.T.A.; Saatchi, S.S.; Lewis, S.L.; Feldpausch, T.R.; Woodhouse, I.H.; Sonké, B.; Rowland, C.; Meir, P. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens. Environ. 2011, 115, 2861–2873. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Muller-Landau, H.C.; Detto, M.; Thomas, S.C.; Toan, T.; Saatchi, S.S. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 2014, 11. [Google Scholar] [CrossRef] [Green Version]
Previous Vegetation | Deforestation Rate (ha yr−1) | AGBC Loss Rate (t C yr−1) |
---|---|---|
Dense forest | 8889 | 640,222 |
Moderate forest | 1233 | 44,982 |
Open forest | 284 | 10,781 |
Mangrove & wetland | 53 | 1264 |
Wooded grassland | 3806 | 97,724 |
Total | 14,265 | 794,972 |
Forest | Wooded Grassland | |||
---|---|---|---|---|
(Mt C yr−1) | (t C ha−1 yr−1) | (Mt C yr−1) | (t C ha−1 yr−1) | |
GPP | 34 (21/50) | 6.2 (3.9/9.1) | 101 (67/152) | 2.5 (1.7/3.8) |
Ra | 15 (9/24) | 2.8 (1.6/4.4) | 46 (28/75) | 1.1 (0.7/1.9) |
NPP | 17 (11/26) | 3.2 (2.1/4.7) | 53 (36/77) | 1.3 (0.9/1.9) |
Rh | 18 (12/28) | 3.3 (2.1/5.1) | 57 (38/84) | 1.4 (1.0/2.1) |
NEE | 0.8 (−3/6) | 0.2 (−0.6/1.1) | 3.6 (−8.7/17.8) | 0.09 (−0.2/0.4) |
Fire | 0.007 (0.006/0.008) | 0.0012 (0.001/0.0015) | 0.02 (0.02/0.03) | 0.0005 (0.00045/0.0007) |
NBE | 0.8 (−3/6) | 0.2 (−0.6/1.1) | 3.6 (−8.7/17.8) | 0.1 (−0.2/0.4) |
NPP Wood | Residence Time of Wood | ||
---|---|---|---|
(Mt C yr−1) | (t C ha−1 yr−1) | (Years) | |
Forest | 10.1 (4.8/18.6) | 1.9 (0.9/3.5) | 16.3 (9.6/32.2) |
Wooded grassland | 24.5 (8.2/44.8) | 0.6 (0.2/1.1) | 9.5 (6.1/17.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Veiga, P.; Carreiras, J.; Smallman, T.L.; Exbrayat, J.-F.; Ndambiri, J.; Mutwiri, F.; Nyasaka, D.; Quegan, S.; Williams, M.; Balzter, H. Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion. Remote Sens. 2020, 12, 2380. https://doi.org/10.3390/rs12152380
Rodríguez-Veiga P, Carreiras J, Smallman TL, Exbrayat J-F, Ndambiri J, Mutwiri F, Nyasaka D, Quegan S, Williams M, Balzter H. Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion. Remote Sensing. 2020; 12(15):2380. https://doi.org/10.3390/rs12152380
Chicago/Turabian StyleRodríguez-Veiga, Pedro, Joao Carreiras, Thomas Luke Smallman, Jean-François Exbrayat, Jamleck Ndambiri, Faith Mutwiri, Divinah Nyasaka, Shaun Quegan, Mathew Williams, and Heiko Balzter. 2020. "Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion" Remote Sensing 12, no. 15: 2380. https://doi.org/10.3390/rs12152380
APA StyleRodríguez-Veiga, P., Carreiras, J., Smallman, T. L., Exbrayat, J. -F., Ndambiri, J., Mutwiri, F., Nyasaka, D., Quegan, S., Williams, M., & Balzter, H. (2020). Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion. Remote Sensing, 12(15), 2380. https://doi.org/10.3390/rs12152380