Earth Observation Data Supporting Non-Communicable Disease Research: A Review
Abstract
:1. Introduction
1.1. Relevance of Public Health Research
1.2. The Role of Earth Observation Data in Public Health Research
- How has the synergistic research field of joint analyses of NCD and EO data evolved over the last 20 years?
- Where are the global investigation hotspots regarding this topic?
- What time frames and temporal resolutions are commonly covered in NCD studies incorporating EO data?
- On what spatial scale do the investigations take place?
- Which EO sensors are popularly employed for investigating environmental parameters affecting NCD risk?
- Which atmospheric and land surface-related EO parameters are used to investigate the impact of the environment on NCD risk?
- What are the most common disease groups addressed in reviewed studies?
- How relevant is EO in existing research efforts on the impact of the environment on NCD risk, and what are the major patterns with respect to the similarities and outcomes found in these studies?
1.3. Review Focus
2. Methodology of the Review
- The topic must be related to the topic of EO, remote sensing, or GIS
- It further must be related to NCDs
- Publication type must be “article”
- Language must be English
- Publication date must be between 2000 and 2020
- Publication year
- Country of first author
- Country in which the research was conducted
- Publishing journal and research background
- Temporal scale and temporal resolution of research (uni- to multi-temporal)
- Spatial resolution of the research
- Remote sensing sensors used
- EO-derived parameters included
- NCDs investigated
3. Results: EO Contribution to NCD Research
3.1. Temporal Development of Studies Published over the Last Two Decades
3.2. Spatial Distribution of Studies Investigated
3.3. Discipline of Studies Investigated
3.4. Temporal Coverage of Studies Investigated
3.5. Spatial Coverage of Studies Investigated
- “local”—Studies that concentrate on one specific location (e.g., a city with at most suburbs in the direct vicinity)
- “regional”—Studies that include multiple cities, counties, or even federal states/provinces but not an entire country
- “national”—Studies that include at least one entire country but not an entire continent
- “continental”—Studies that include an entire continent in their research
- “global”—Studies based on data of more than one entire continent
3.6. Remote Sensing Satellite Sensors Used within the Studies Investigated
3.7. Environmental Parameters Analyzed in the Studies Investigated
3.8. Disease Groups in Focus within the Studies Investigated
3.9. EO Data Relevance within Studies Investigated and Major Patterns of Outcome
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heuson, C.; Traidl-Hoffmann, C. Bedeutung von klima- und umweltschutz für die gesundheit mit besonderer berücksichtigung von schädigungen der hautbarriere und allergischen folgeerkrankungen. Bundesgesundheitsbl 2018, 61, 684–696. [Google Scholar] [CrossRef] [PubMed]
- United Nations Sustainable Development Goals: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 24 May 2020).
- Gilles, S.; Traidl-Hoffmann, C. The environment-pathogen-host axis in communicable and non-communicable diseases: Recent advances in experimental and clinical research. JDDG J. Der Dtsch. Dermatol. Ges. 2014, 12, 395–399. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Non Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 24 May 2020).
- Mendis, S.; World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156485-4. [Google Scholar]
- World Health Organization. Genes and Human Diseases. Available online: http://www.who.int/genomics/public/geneticdiseases/en/ (accessed on 24 May 2020).
- World Health Organization. Public Health, Environmental and Social Determinants of Health (PHE). Available online: http://www.who.int/phe/about_us/en/ (accessed on 24 May 2020).
- Seto, E.Y.W.; Holt, A.; Rivard, T.; Bhatia, R. Spatial distribution of traffic induced noise exposures in a US city: An analytic tool for assessing the health impacts of urban planning decisions. Int. J. Health Geogr. 2007, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, C.; Zhang, G.; Xiao, L.; Dixon, J. Urbanisation and human health in China: Spatial features and a systemic perspective. Environ. Sci. Pollut. Res. Int. 2012, 19, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Short, N.M. The Landsat Tutorial Workbook. Basics of Satellite Remote Sensing; U.S. Government Printing Office: Washington, DC, USA, 1982.
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) northern hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- European Space Agency Planet. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/flock-1-imaging-constellation#foot3 (accessed on 25 May 2020).
- European Space Agency TOMS. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/t/toms (accessed on 25 May 2020).
- National Aeronautics and Space Administration. The Aura Mission. Available online: https://aura.gsfc.nasa.gov/ (accessed on 25 May 2020).
- European Space Agency. Sentinel-5P TROPOMI User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-5p-tropomi (accessed on 25 May 2020).
- National Aeronautics and Space Administration. United States Geological Survey LP DAAC-MODIS Overview. Available online: https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/modis-overview/ (accessed on 15 May 2020).
- Dietrich, D.; Dekova, R.; Davy, S.; Fahrni, G.; Geissbühler, A. Applications of space technologies to global health: Scoping review. J. Med. Internet Res. 2018, 20, e230. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Stein, A.; James, P.; Brownson, R.C.; Wu, T.; Xiao, Q.; Wang, L.; Sabel, C.E.; Wang, Y. Earth observation: Investigating noncommunicable diseases from space. Annu. Rev. Public Health 2019, 40, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.H.; LeMasters, G.K. A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal. Toxicol. 2007, 19, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Exp. Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Hoek, G. Methods for assessing long-term exposures to outdoor air pollutants. Curr. Environ. Health Rep. 2017, 4, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Van Kempen, E.; Casas, M.; Pershagen, G.; Foraster, M. WHO environmental noise guidelines for the European region: A systematic review on environmental noise and cardiovascular and metabolic effects: A summary. IJERPH 2018, 15, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z. Release of the national healthcare big data in China: A historic leap in clinical research. AME Med. J. 2017, 2, 19. [Google Scholar] [CrossRef]
- Little, M.P.; Linet, M.S.; Kimlin, M.G.; Lee, T.; Tatalovich, Z.; Sigurdson, A.J.; Cahoon, E.K. Cumulative solar ultraviolet radiation exposure and basal cell carcinoma of the skin in a nationwide US cohort using satellite and ground-based measures. Environ. Health 2019, 18, 114. [Google Scholar] [CrossRef] [Green Version]
- Engemann, K.; Pedersen, C.B.; Arge, L.; Tsirogiannis, C.; Mortensen, P.B.; Svenning, J.-C. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. USA 2019, 116, 5188–5193. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Jiang, D.; Wang, Y.; Chen, W.; Huang, Y.; Zhuang, D. Study on association between spatial distribution of metal mines and disease mortality: A case study in Suxian district, South China. IJERPH 2013, 10, 5163–5177. [Google Scholar] [CrossRef]
- Hystad, P.; Demers, P.A.; Johnson, K.C.; Brook, J.; van Donkelaar, A.; Lamsal, L.; Martin, R.; Brauer, M. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study. Environ. Health 2012, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Crouse, D.L.; Peters, P.A.; van Donkelaar, A.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A.; et al. Risk of non accidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A Canadian national-level cohort study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef]
- Hu, Z.; Rao, K.R. Particulate air pollution and chronic ischemic heart disease in the eastern United States: A county level ecological study using satellite aerosol data. Environ. Health 2009, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. Int. J. Health Geogr. 2009, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-W.; Wheeler, D.C.; Park, Y.; Cahoon, E.K.; Hollenbeck, A.R.; Freedman, D.M.; Abnet, C.C. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int. J. Cancer 2012, 131, E1015–E1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, S.E.; Wagner, S.E.; Burch, J.; Bayakly, R.; Vena, J.E. A case-referent study: Light at night and breast cancer risk in Georgia. Int. J. Health Geogr. 2013, 12, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; van Donkelaar, A.; Jerrett, M.; Martin, R.V.; Brook, J.R.; et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ. Health Perspect. 2013, 121, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Loop, M.S.; Kent, S.T.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, S.M.; Estes, M.G.; Quattrochi, D.A.; Hemmings, S.N.; Wadley, V.G.; McClure, L.A. Fine particulate matter and incident cognitive impairment in the reasons for geographic and racial differences in stroke (REGARDS) cohort. PLoS ONE 2013, 8, e75001. [Google Scholar] [CrossRef]
- Prud’homme, G.; Dobbin, N.A.; Sun, L.; Burnett, R.T.; Martin, R.V.; Davidson, A.; Cakmak, S.; Villeneuve, P.J.; Lamsal, L.N.; van Donkelaar, A.; et al. Comparison of remote sensing and fixed-site monitoring approaches for examining air pollution and health in a national study population. Atmos. Environ. 2013, 80, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-H.M.; Coull, B.A.; Sternthal, M.J.; Kloog, I.; Schwartz, J.; Cohen, S.; Wright, R.J. Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J. Allergy Clin. Immunol. 2014, 133, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Koutrakis, P.; Coull, B.; Kloog, I.; Schwartz, J. Acute effect of fine particulate matter on mortality in three Southeastern states from 2007–2011. J. Exp. Sci. Environ. Epidemiol. 2016, 26, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yang, C.; Zhao, Y.; Ma, Z.; Bi, J.; Liu, Y.; Meng, X.; Wang, Y.; Cai, J.; Kan, H.; et al. Associations between long-term exposure to ambient particulate air pollution and type 2 Diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environ. Int. 2016, 92–93, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Tagliabue, G.; Borgini, A.; Tittarelli, A.; van Donkelaar, A.; Martin, R.V.; Bertoldi, M.; Fabiano, S.; Maghini, A.; Codazzi, T.; Scaburri, A.; et al. Atmospheric fine particulate matter and breast cancer mortality: A population-based cohort study. BMJ Open 2016, 6, e012580. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, A.; Miller, A.B.; Weichenthal, S.A.; To, T.; Wall, C.; van Donkelaar, A.; Martin, R.V.; Crouse, D.L.; Villeneuve, P.J. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian national breast screening study. Int. J. Cancer 2016, 139, 1958–1966. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Guo, Y.; Kowal, P.; Airhihenbuwa, C.O.; Di, Q.; Zheng, Y.; Zhao, X.; Vaughn, M.G.; Howard, S.; Schootman, M.; et al. Exposure to air pollution and tobacco smoking and their combined effects on depression in six low- and middle-income countries. Br. J. Psychiatry 2017, 211, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNaughton, P.; Eitland, E.; Kloog, I.; Schwartz, J.; Allen, J. Impact of particulate matter exposure and surrounding “Greenness” on chronic absenteeism in massachusetts public schools. Int. J. Environ. Res. Public Health 2017, 14, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hamdan, A.Z.; Preetha, P.P.; Albashaireh, R.N.; Al-Hamdan, M.Z.; Crosson, W.L. Investigating the effects of environmental factors on autism spectrum disorder in the USA using remotely sensed data. Environ. Sci. Pollut. Res. 2018, 25, 7924–7936. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.C.; Perrino, T.; Lombard, J.; Wang, K.; Toro, M.; Rundek, T.; Gutierrez, C.M.; Dong, C.; Plater-Zyberk, E.; Nardi, M.I.; et al. Health disparities in the relationship of neighborhood greenness to mental health outcomes in 249,405 US medicare beneficiaries. Int. J. Environ. Res. Public Health 2018, 15, 430. [Google Scholar] [CrossRef] [Green Version]
- Fong, K.C.; Kloog, I.; Coull, B.A.; Koutrakis, P.; Laden, F.; Schwartz, J.D.; James, P. Residential greenness and birthweight in the state of Massachusetts, USA. Int. J. Environ. Res. Public Health 2018, 15, 1248. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Min, K. Outdoor artificial nighttime light and use of hypnotic medications in older adults: A population-based cohort study. J. Clin. Sleep Med. 2018, 14, 1903–1910. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Y.; Guo, Y.; Zhou, H.; Wang, X.; Wang, Q.; Shen, H.; Zhang, Y.; Yan, D.; Zhang, Y.; et al. Effect of airborne particulate matter of 2.5 μm or less on preterm birth: A national birth cohort study in China. Environ. Int. 2018, 121, 1128–1136. [Google Scholar] [CrossRef]
- Garshick, E.; Grady, S.T.; Hart, J.E.; Coull, B.A.; Schwartz, J.D.; Laden, F.; Moy, M.L.; Koutrakis, P. Indoor black carbon and biomarkers of systemic inflammation and endothelial activation in COPD patients. Environ. Res. 2018, 165, 358–364. [Google Scholar] [CrossRef]
- Bo, Y.; Guo, C.; Lin, C.; Chang, L.; Chan, T.-C.; Huang, B.; Lee, K.-P.; Tam, T.; Lau, A.K.H.; Lao, X.Q.; et al. Dynamic changes in long-term exposure to ambient particulate matter and incidence of hypertension in adults a natural experiment. Hypertension 2019, 74, 669–677. [Google Scholar] [CrossRef]
- Li, N.; Chen, G.; Liu, F.; Mao, S.; Liu, Y.; Hou, Y.; Lu, Y.; Liu, S.; Wang, C.; Xiang, H.; et al. Associations of long-term exposure to ambient PM1 with hypertension and blood pressure in rural Chinese population: The Henan rural cohort study. Environ. Int. 2019, 128, 95–102. [Google Scholar] [CrossRef]
- Liang, F.; Yang, X.; Liu, F.; Li, J.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; Yu, L.; et al. Long-term exposure to ambient fine particulate matter and incidence of diabetes in China: A cohort study. Environ. Int. 2019, 126, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Yitshak-Sade, M.; James, P.; Kloog, I.; Hart, J.E.; Schwartz, J.D.; Laden, F.; Lane, K.J.; Fabian, M.P.; Fong, K.C.; Zanobetti, A. Neighborhood greenness attenuates the adverse effect of PM2.5 on cardiovascular mortality in neighborhoods of lower socioeconomic status. Int. J. Environ. Res. Public Health 2019, 16, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Hu, H. Combining data from multiple sources to evaluate spatial variations in the economic costs of PM2.5-related health conditions in the Beijing-Tianjin-Hebei region. Int. J. Environ. Res. Public Health 2019, 16, 3994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Liu, X.; Tu, R.; Dong, X.; Zhai, Z.; Mao, Z.; Huo, W.; Chen, G.; Xiang, H.; Guo, Y.; et al. Long-term exposure to ambient air pollution attenuated the association of physical activity with metabolic syndrome in rural Chinese adults: A cross-sectional study. Environ. Int. 2020, 136, 105459. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef]
- Smargiassi, A.; Fournier, M.; Griot, C.; Baudouin, Y.; Kosatsky, T. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J. Exp. Sci. Environ. Epidemiol. 2008, 18, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.-Y.; Markevych, I.; Bloom, M.S.; Heinrich, J.; Guo, Y.; Morawska, L.; Dharmage, S.C.; Knibbs, L.D.; Jalaludin, B.; Jalava, P.; et al. Community greenness, blood pressure, and hypertension in urban dwellers: The 33 communities Chinese health study. Environ. Int. 2019, 126, 727–734. [Google Scholar] [CrossRef]
- Wong, C.M.; Lai, H.K.; Tsang, H.; Thach, T.Q.; Thomas, G.N.; Lam, K.B.H.; Chan, K.P.; Yang, L.; Lau, A.K.H.; Ayres, J.G.; et al. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ. Health Perspect. 2015, 123, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Salm, A.K.; Benson, M.J. Increased dementia mortality in West Virginia counties with mountaintop removal mining? Int. J. Environ. Res. Public Health 2019, 16, 4278. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Xiang, H.; Mao, Z.; Huo, W.; Guo, Y.; Wang, C.; Li, S. Is long-term exposure to air pollution associated with poor sleep quality in rural China? Environ. Int. 2019, 133, 105205. [Google Scholar] [CrossRef] [PubMed]
- Huss, A.; van Wel, L.; Bogaards, L.; Vrijkotte, T.; Wolf, L.; Hoek, G.; Vermeulen, R. Shedding some light in the dark-a comparison of personal measurements with satellite-based estimates of exposure to light at night among children in the Netherlands. Environ. Health Perspect. 2019, 127, UNSP 067001. [Google Scholar] [CrossRef] [Green Version]
- Marinaccio, A.; Scortichini, M.; Gariazzo, C.; Leva, A.; Bonafede, M.; de’Donato, F.K.; Stafoggia, M.; Viegi, G.; Michelozzi, P.; Carla, A.; et al. Nationwide epidemiological study for estimating the effect of extreme outdoor temperature on occupational injuries in Italy. Environ. Int. 2019, 133, UNSP 105176. [Google Scholar] [CrossRef]
- Garland, C.F.; Garland, F.C.; Gorham, E.D. Epidemiologic evidence for different roles of ultraviolet A and B radiation in melanoma mortality rates. Ann. Epidemiol. 2003, 13, 395–404. [Google Scholar] [CrossRef]
- Butland, B.K.; Anderson, H.R.; van Donkelaar, A.; Fuertes, E.; Brauer, M.; Brunekreef, B.; Martin, R.V. Ambient air pollution and the prevalence of rhinoconjunctivitis in adolescents: A worldwide ecological analysis. Air Qual. Atmos. Health 2018, 11, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, P.; Lakerveld, J.; Wu, J.; Stein, A.; Root, E.D.; Sabel, C.E.; Vermeulen, R.; Remais, J.V.; Chen, X.; Brownson, R.C.; et al. Top 10 Research Priorities in Spatial Lifecourse Epidemiology. Environ. Health Perspect. 2019, 127, 074501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, T.; Zhu, T.; Geng, G.; Zhang, Q. Association between pregnancy loss and ambient PM2·5 using survey data in Africa: A longitudinal case-control study, 1998–2016. Lancet Planet. Health 2019, 3, e219–e225. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Z.; Qian, Z.M.; Guo, Y.; Zhou, J.; Yang, Y.; Acharya, B.K.; Guo, S.; Zheng, Y.; Cummings-Vaughn, L.A.; Rigdon, S.E.; et al. Ambient fine particulate matter and ozone higher than certain thresholds associated with myopia in the elderly aged 50 years and above. Environ. Res. 2019, 177, 108581. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-118-34328-9. [Google Scholar]
- Markevych, I.; Thiering, E.; Fuertes, E.; Sugiri, D.; Berdel, D.; Koletzko, S.; von Berg, A.; Bauer, C.-P.; Heinrich, J. A cross-sectional analysis of the effects of residential greenness on blood pressure in 10-year old children: Results from the GINIplus and LISAplus studies. BMC Public Health 2014, 14, 477. [Google Scholar] [CrossRef] [Green Version]
- Pinault, L.; Tjepkema, M.; Crouse, D.L.; Weichenthal, S.; van Donkelaar, A.; Martin, R.V.; Brauer, M.; Chen, H.; Burnett, R.T. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ. Health 2016, 15, 18. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-T.; Wu, C.-D.; Pan, W.-C.; Lung, S.-C.C.; Su, H.-J. Association between surrounding greenness and Schizophrenia: A Taiwanese cohort study. IJERPH 2019, 16, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, K.A.; Lodge, C.; Lowe, A.J.; Prendergast, L.A.; Thomas, P.S.; Bennett, C.M.; Abramson, M.J.; Dharmage, S.C.; Erbas, B. Pollen exposure at birth and adolescent lung function, and modification by residential greenness. Allergy 2019, 74, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Melly, S.J.; Ridgway, W.L.; Coull, B.A.; Schwartz, J. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts. Environ. Health 2012, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long- and short-term exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology 2013, 24, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamdan, M.Z.; Crosson, W.L.; Economou, S.A.; Estes, M.G.; Estes, S.M.; Hemmings, S.N.; Kent, S.T.; Puckett, M.; Quattrochi, D.A.; Rickman, D.L.; et al. Environmental public health applications using remotely sensed data. Geocarto Int. 2014, 29, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; van Donkelaar, A.; Jerrett, M.; Martin, R.V.; Kopp, A.; et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 2014, 129, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Hyder, A.; Lee, H.J.; Ebisu, K.; Koutrakis, P.; Belanger, K.; Bell, M.L. PM2.5 exposure and birth outcomes use of satellite- and monitor-based data. Epidemiology 2014, 25, 58–67. [Google Scholar] [CrossRef]
- Hsu, H.-H.L.; Chiu, Y.-H.M.; Coull, B.A.; Kloog, I.; Schwartz, J.; Lee, A.; Wright, R.O.; Wright, R.J. Prenatal particulate air pollution and asthma onset in urban children identifying sensitive windows and sex differences. Am. J. Respir. Crit. Care Med. 2015, 192, 1052–1059. [Google Scholar] [CrossRef]
- Kloog, I.; Melly, S.J.; Coull, B.A.; Nordio, F.; Schwartz, J.D. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ. Health Perspect. 2015, 123, 1053–1058. [Google Scholar] [CrossRef] [Green Version]
- Sade, M.Y.; Novack, V.; Ifergane, G.; Horev, A.; Kloog, I. Air pollution and ischemic stroke among young adults. Stroke 2015, 46, 3348–3353. [Google Scholar] [CrossRef]
- Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B.A.; Koutrakis, P.; Melly, S.J.; Schwartz, J.D. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 2016, 124, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickland, M.J.; Hao, H.; Hu, X.; Chang, H.H.; Darrow, L.A.; Liu, Y. Pediatric emergency visits and short-term changes in PM2.5 concentrations in the US state of Georgia. Environ. Health Perspect. 2016, 124, 690–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetreault, L.-F.; Doucet, M.; Gamache, P.; Fournier, M.; Brand, A.; Kosatsky, T.; Smargiassi, A. Childhood exposure to ambient air pollutants and the onset of Asthma: An administrative cohort study in Quebec. Environ. Health Perspect. 2016, 124, 1276–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetreault, L.-F.; Doucet, M.; Gamache, P.; Fournier, M.; Brand, A.; Kosatsky, T.; Smargiassi, A. Severe and moderate Asthma exacerbations in asthmatic children and exposure to ambient air pollutants. Int. J. Environ. Res. Public Health 2016, 13, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, S.A.; Insaf, T.Z.; Hall, E.S.; Talbot, T.O.; Huff, A.K. Assessing the impact of fine particulate matter (PM2.5) on respiratory cardiovascular chronic diseases in the New York city Metropolitan area using hierarchical Bayesian model estimates. Environ. Res. 2016, 151, 399–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.M.; Tsang, H.; Lai, H.K.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Zheng, Q.; Ayres, J.G.; Lee, S.Y.; Lam, T.H.; et al. Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiol. Biomark. Prev. 2016, 25, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.-M.; Tsang, H.; Lai, H.-K.; Thach, T.-Q.; Thomas, G.N.; Chan, K.-P.; Lee, S.-Y.; Ayres, J.G.; Lam, T.-H.; Leung, W.K. STROBE-long-term exposure to ambient fine particulate air pollution and hospitalization due to peptic ulcers. Medicine 2016, 95, e3543. [Google Scholar] [CrossRef]
- Chen, H.; Kwong, J.C.; Copes, R.; Hystad, P.; van Donkelaar, A.; Tu, K.; Brook, J.R.; Goldberg, M.S.; Martin, R.V.; Murray, B.J.; et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017, 108, 271–277. [Google Scholar] [CrossRef]
- James, P.; Kioumourtzoglou, M.-A.; Hart, J.E.; Banay, R.E.; Kloog, I.; Laden, F. Interrelationships between walkability, air pollution, greenness, and body mass index. Epidemiology 2017, 28, 780–788. [Google Scholar] [CrossRef]
- Lavigne, E.; Belair, M.-A.; Do, M.T.; Stieb, D.M.; Hystad, P.; van Donkelaar, A.; Martin, R.V.; Crouse, D.L.; Crighton, E.; Chen, H.; et al. Maternal exposure to ambient air pollution and risk of early childhood cancers: A population-based study in Ontario, Canada. Environ. Int. 2017, 100, 139–147. [Google Scholar] [CrossRef]
- Lin, H.; Guo, Y.; Di, Q.; Zheng, Y.; Kowal, P.; Xiao, J.; Liu, T.; Li, X.; Zeng, W.; Howard, S.W.; et al. Ambient PM2.5 and stroke effect modifiers and population attributable risk in six low- and middle-income countries. Stroke 2017, 48, 1191–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, M.J.; Just, A.C.; Kloog, I.; Pantic, I.; Schnaas, L.; Lee, A.; Bose, S.; Chiu, Y.-H.M.; Hsu, H.-H.L.; Coull, B.; et al. Prenatal particulate matter exposure and wheeze in Mexican children Effect modification by prenatal psychosocial stress. Ann. Allergy Asthma Immunol. 2017, 119, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chang, L.; Lau, A.K.H.; Chan, T.-C.; Chuang, Y.C.; Chan, J.; Lin, C.; Jiang, W.K.; Dear, K.; Zee, B.C.Y.; et al. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30034 Taiwanese adults. Int. J. Epidemiol. 2017, 46, 1126–1136. [Google Scholar] [CrossRef]
- Chan, T.-C.; Zhang, Z.; Lin, B.-C.; Lin, C.; Deng, H.-B.; Chuang, Y.C.; Chan, J.W.M.; Jiang, W.K.; Tam, T.; Chang, L.; et al. Long-term exposure to ambient fine particulate matter and chronic kidney disease: A cohort study. Environ. Health Perspect. 2018, 126, 107002. [Google Scholar] [CrossRef]
- Brook, J.R.; Setton, E.M.; Seed, E.; Shooshtari, M.; Doiron, D. The Canadian urban environmental health research consortium-a protocol for building a national environmental exposure data platform for integrated analyses of urban form and health. BMC Public Health 2018, 18, 114. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Jin, Z.; Li, S.; Jin, X.; Tong, S.; Liu, S.; Yang, Y.; Huang, H.; Guo, Y. Early life exposure to particulate matter air pollution (PM1, PM2.5 and PM10) and autism in Shanghai, China: A case-control study. Environ. Int. 2018, 121, 1121–1127. [Google Scholar] [CrossRef]
- Girguis, M.S.; Strickland, M.J.; Hu, X.; Liu, Y.; Chang, H.H.; Kloog, I.; Belanoff, C.; Bartell, S.M.; Vieira, V.M. Exposure to acute air pollution and risk of bronchiolitis and otitis media for preterm and term infants. J. Exp. Sci. Environ. Epidemiol. 2018, 28, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Khalili, R.; Bartell, S.M.; Hu, X.; Liu, Y.; Chang, H.H.; Belanoff, C.; Strickland, M.J.; Vieira, V.M. Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in Massachusetts: A case-crossover analysis. Environ. Health 2018, 17, 20. [Google Scholar] [CrossRef] [Green Version]
- Lao, X.Q.; Zhang, Z.; Lau, A.K.H.; Chan, T.-C.; Chuang, Y.C.; Chan, J.; Lin, C.; Guo, C.; Jiang, W.K.; Tam, T.; et al. Exposure to ambient fine particulate matter and semen quality in Taiwan. Occup. Environ. Med. 2018, 75, 148–154. [Google Scholar] [CrossRef]
- Lee, A.; Leon, H.-H.; Chiu, Y.-H.M.; Bose, S.; Rosa, M.J.; Kloog, I.; Wilson, A.; Schwartz, J.; Cohen, S.; Coull, B.A.; et al. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J. Allergy Clin. Immunol. 2018, 141, 1880–1886. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, E.J.; Moore, J.X.; McClure, L.A.; Griffin, R.; Al-Hamdan, M.Z.; Wang, H.E. Fine particulate matter pollution and risk of community-acquired sepsis. Int. J. Environ. Res. Public Health 2018, 15, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheffield, P.E.; Speranza, R.; Chiu, Y.-H.M.; Hsu, H.-H.L.; Curtin, P.C.; Renzetti, S.; Pajak, A.; Coull, B.; Schwartz, J.; Kloog, I.; et al. Association between particulate air pollution exposure during pregnancy and postpartum maternal psychological functioning. PLoS ONE 2018, 13, e0195267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; van Donkelaar, A.; Brook, J.R.; Copes, R.; Tu, K.; Goldberg, M.S.; Villeneuve, P.J.; et al. Effects of ambient air pollution on incident Parkinson’s disease in Ontario, 2001 to 2013: A population-based cohort study. Int. J. Epidemiol. 2018, 47, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Chen, H.; Strickland, M.J.; Kan, H.; Chang, H.H.; Klein, M.; Yang, C.; Meng, X.; Liu, Y. Associations between birth outcomes and maternal PM2.5 exposure in Shanghai: A comparison of three exposure assessment approaches. Environ. Int. 2018, 117, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, C.; Lau, A.K.H.; Chan, T.-C.; ChiehChuang, Y.; Lin, C.; KaiJiang, W.; Yeoh, E.; Tam, T.; Woo, K.S.; et al. Long-term exposure to fine particulate matter, blood pressure, and incident hypertension in Taiwanese adults. Environ. Health Perspect. 2018, 126, 017008. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Wang, J.; Xu, D.; Yin, Z.; Chen, H.; Lv, Y.; Luo, J.; Zeng, Y.; Liu, Y.; et al. All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: A cohort study. Lancet Public Health 2018, 3, e470–e477. [Google Scholar] [CrossRef] [Green Version]
- Yitshak-Sade, M.; Bobb, J.F.; Schwartz, J.D.; Kloog, I.; Zanobetti, A. The association between short and long-term exposure to PM2.5 and temperature and hospital admissions in New England and the synergistic effect of the short-term exposures. Sci. Total Environ. 2018, 639, 868–875. [Google Scholar] [CrossRef]
- Chen, G.; Wang, A.; Li, S.; Zhao, X.; Wang, Y.; Li, H.; Meng, X.; Knibbs, L.D.; Bell, M.L.; Abramson, M.J.; et al. Long-term exposure to air pollution and survival after ischemic stroke the China national stroke registry cohort. Stroke 2019, 50, 563–570. [Google Scholar] [CrossRef]
- Moody, E.C.; Cantoral, A.; Tamayo-Ortiz, M.; Pizano-Zarate, L.; Schnaas, L.; Kloog, I.; Oken, E.; Coull, B.; Baccarelli, A.; Tellez-Rojo, M.M.; et al. Association of prenatal and perinatal exposures to particulate matter with changes in hemoglobin A(1c) levels in children aged 4 to 6 years. JAMA Netw. Open 2019, 2, e1917643. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.; Liu, J.; Zhang, Q.; Geng, G.; Zheng, Y.; Tong, D.; Liu, Z.; Guan, D.; Bo, Y.; Zhu, T.; et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013–2017. Sci. China Earth Sci. 2019, 62, 1847–1856. [Google Scholar] [CrossRef]
- Yang, B.-Y.; Guo, Y.; Morawska, L.; Bloom, M.S.; Markevych, I.; Heinrich, J.; Dharmage, S.C.; Knibbs, L.D.; Lin, S.; Yim, S.H.-L.; et al. Ambient PM1 air pollution and cardiovascular disease prevalence: Insights from the 33 communities Chinese health study. Environ. Int. 2019, 123, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.L.Z.; Koutrakis, P.; Huang, S.; Grady, S.; Hart, J.E.; Coull, B.A.; Laden, F.; Requia, W.; Schwartz, J.; Garshick, E. Short-term effects of particle gamma radiation activities on pulmonary function in COPD patients. Environ. Res. 2019, 175, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, S.; Li, T.; Zhu, H.; Liang, S.; Xu, K.; Zhang, Y.; Yuan, X.; Yang, Y.; Pan, H.; et al. Effect of PM2.5 on macrosomia in China: A nationwide prospective cohort study. Pediatric Obes. 2020, 15, e12584. [Google Scholar] [CrossRef] [PubMed]
- Davila-Cordova, J.E.; Tapia-Aguirre, V.; Vasquez-Apestegui, V.; Ordonez-Ibarguen, L.; Vu, B.N.; Steenland, K.; Gonzales-Rengifo, G.F. Association of PM2.5 concentration with health center outpatient visits for respiratory diseases of children under 5 years old in Lima, Peru. Environ. Health 2020, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecki, M.M.; Rosa, M.J.; Solano-Gonzalez, M.; Kloog, I.; Just, A.C.; Martinez-Medina, S.; Schnaas, L.; Tamayo-Ortiz, M.; Wright, R.O.; Tellez-Rojo, M.M.; et al. Particulate air pollution exposure during pregnancy and postpartum depression symptoms in women in Mexico City. Environ. Int. 2020, 134, 105325. [Google Scholar] [CrossRef]
- Tellez-Rojo, M.M.; Rothenberg, S.J.; Luis Texcalac-Sangrador, J.; Just, A.C.; Kloog, I.; Rojas-Saunero, L.P.; Gutierrez-Avila, I.; Bautista-Arredondo, L.F.; Tamayo-Ortiz, M.; Romero, M.; et al. Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City metropolitan area. Environ. Res. 2020, 180, 108868. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Burnett, R.T. High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over North America. Environ. Sci. Technol. 2015, 49, 10482–10491. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Hu, M.; Pan, X.; Shi, J.; Chen, F.; He, K.; Koutrakis, P.; Christiani, D.C. Acute health impacts of airborne particles estimated from satellite remote sensing. Environ. Int. 2013, 51, 150–159. [Google Scholar] [CrossRef]
- Dadvand, P.; Sunyer, J.; Basagana, X.; Ballester, F.; Lertxundi, A.; Fernandez-Somoano, A.; Estarlich, M.; Garcia-Esteban, R.; Mendez, M.A.; Nieuwenhuijsen, M.J. Surrounding greenness and pregnancy outcomes in four spanish birth cohorts. Environ. Health Perspect. 2012, 120, 1481–1487. [Google Scholar] [CrossRef]
- Allen, R.W.; Gombojav, E.; Barkhasragchaa, B.; Byambaa, T.; Lkhasuren, O.; Amram, O.; Takaro, T.K.; Janes, C.R. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2013, 6, 137–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hystad, P.; Davies, H.W.; Frank, L.; Van Loon, J.; Gehring, U.; Tamburic, L.; Brauer, M. Residential greenness and birth outcomes: Evaluating the influence of spatially correlated built-environment factors. Environ. Health Perspect. 2014, 122, 1095–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.H.; Van Hee, V.C.; Bergen, S.; Szpiro, A.A.; DeRoo, L.A.; London, S.J.; Marshall, J.D.; Kaufman, J.D.; Sandler, D.P. Long-term air pollution exposure and blood pressure in the sister study. Environ. Health Perspect. 2015, 123, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Andrusaityte, S.; Grazuleviciene, R.; Kudzyte, J.; Bernotiene, A.; Dedele, A.; Nieuwenhuijsen, M.J. Associations between neighbourhood greenness and asthma in preschool children in Kaunas, Lithuania: A case-control study. BMJ Open 2016, 6, e010341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafoggia, M.; Zauli-Sajani, S.; Pey, J.; Samoli, E.; Alessandrini, E.; Basagana, X.; Cernigliaro, A.; Chiusolo, M.; Demaria, M.; Diaz, J.; et al. Desert dust outbreaks in southern Europe: Contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions. Environ. Health Perspect. 2016, 124, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Golan, R.; Kloog, I.; Almog, R.; Gesser-Edelsburg, A.; Negev, M.; Jolles, M.; Shalev, V.; Eisenberg, V.H.; Koren, G.; Abu Ahmad, W.; et al. Environmental exposures and fetal growth: The Haifa pregnancy cohort study. BMC Public Health 2018, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Gronlund, C.J.; Sheppard, L.; Adar, S.D.; O’Neill, M.S.; Auchincloss, A.; Madrigano, J.; Kaufman, J.; Roux, A.V.D. Vulnerability to the cardiovascular effects of ambient heat in six US cities: Results from the multi-ethnic study of atherosclerosis (MESA). Epidemiology 2018, 29, 756–764. [Google Scholar] [CrossRef]
- Crouse, D.L.; Pinault, L.; Balram, A.; Brauer, M.; Burnett, R.T.; Martin, R.; van Donkelaar, A.; Villeneuve, P.J.; Weichenthal, S. Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort. Environ. Int. 2019, 128, 292–300. [Google Scholar] [CrossRef]
- Shin, S.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; van Donkelaar, A.; Brook, J.R.; Goldberg, M.S.; Tu, K.; Copes, R.; Martin, R.; et al. Ambient air pollution and the risk of atrial fibrillation and stroke: A population-based cohort study. Environ. Health Perspect. 2019, 127, 087009. [Google Scholar] [CrossRef]
- Huang, Q.; Ren, Y.; Liu, Y.; Liu, S.; Liu, F.; Li, X.; Li, B.; Hou, Y.; Lu, Y.; Li, S.; et al. Associations of gestational and early life exposure to air pollution with childhood allergic rhinitis. Atmos. Environ. 2019, 200, 190–196. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Guo, Y.; Zhou, H.; Wang, X.; Wang, Q.; Shen, H.; Zhang, Y.; Yan, D.; Zhang, Y.; et al. Association of long-term exposure to airborne particulate matter of 1 mu m or less with preterm birth in China. JAMA Pediatr. 2018, 172, e174872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Pereira, G.; Foster, S.; Martin, K.; Christian, H.; Boruff, B.J.; Knuiman, M.; Giles-Corti, B. The association between neighborhood greenness and cardiovascular disease: An observational study. BMC Public Health 2012, 12, 466. [Google Scholar] [CrossRef] [Green Version]
- Balseviciene, B.; Sinkariova, L.; Grazuleviciene, R.; Andrusaityte, S.; Uzdanaviciute, I.; Dedele, A.; Nieuwenhuijsen, M.J. Impact of residential greenness on preschool children’s emotional and behavioral problems. Int. J. Environ. Res. Public Health 2014, 11, 6757–6770. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Villanueva, C.M.; Font-Ribera, L.; Martinez, D.; Basagana, X.; Belmonte, J.; Vrijheid, M.; Grazuleviciene, R.; Kogevinas, M.; Nieuwenhuijsen, M.J. Risks and benefits of green spaces for children: A cross-sectional study of associations with sedentary behavior, obesity, Asthma, and allergy. Environ. Health Perspect. 2014, 122, 1329–1335. [Google Scholar] [CrossRef]
- Wu, C.-D.; McNeely, E.; Cedeno-Laurent, J.G.; Pan, W.-C.; Adamkiewicz, G.; Dominici, F.; Lung, S.-C.C.; Su, H.-J.; Spengler, J.D. Linking student performance in Massachusetts elementary schools with the “Greenness” of school surroundings using remote sensing. PLoS ONE 2014, 9, e108548. [Google Scholar] [CrossRef]
- Sarkar, C.; Webster, C.; Pryor, M.; Tang, D.; Melbourne, S.; Zhang, X.; Jianzheng, L. Exploring associations between urban green, street design and walking: Results from the Greater London boroughs. Landsc. Urban Plan. 2015, 143, 112–125. [Google Scholar] [CrossRef]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagana, X.; Alvarez-Pedrerol, M.; Rivas, I.; Lopez-Vicente, M.; De Castro Pascual, M.; Su, J.; et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef] [Green Version]
- Brokamp, C.; LeMasters, G.K.; Ryan, P.H. Residential mobility impacts exposure assessment and community socioeconomic characteristics in longitudinal epidemiology studies. J. Exp. Sci. Environ. Epidemiol. 2016, 26, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.A.; James, P.; Rudolph, K.E.; Wu, C.-D.; Schwartz, B.S. Greenness and birth outcomes in a range of Pennsylvania communities. Int. J. Environ. Res. Public Health 2016, 13, 311. [Google Scholar] [CrossRef]
- James, P.; Hart, J.E.; Banay, R.F.; Laden, F. Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environ. Health Perspect. 2016, 124, 1344–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younan, D.; Tuvblad, C.; Li, L.; Wu, J.; Lurmann, F.; Franklin, M.; Berhane, K.; McConnell, R.; Wu, A.H.; Baker, L.A.; et al. Environmental determinants of aggression in adolescents: Role of urban neighborhood greenspace. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, K.J.; Stokes, E.C.; Seto, K.C.; Thanikachalam, S.; Thanikachalam, M.; Bell, M.L. Associations between greenness, impervious surface area, and nighttime lights on biomarkers of vascular aging in Chennai, India. Environ. Health Perspect. 2017, 125, UNSP 087003. [Google Scholar] [CrossRef] [Green Version]
- Bezold, C.P.; Banay, R.F.; Coull, B.A.; Hart, J.E.; James, P.; Kubzansky, L.D.; Missmer, S.A.; Laden, F. The association between natural environments and depressive symptoms in adolescents living in the United States. J. Adolesc. Health 2018, 62, 488–495. [Google Scholar] [CrossRef] [PubMed]
- De Keijzer, C.; Tonne, C.; Basagana, X.; Valentin, A.; Singh-Manoux, A.; Alonso, J.; Anto, J.M.; Nieuwenhuijsen, M.J.; Sunyer, J.; Dadvand, P. Residential surrounding greenness and cognitive decline: A 10-year follow-up of the Whitehall II cohort. Environ. Health Perspect. 2018, 126, 077003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, R.; Riggs, D.W.; DeJarnett, N.; Tollerud, D.J.; Wilson, J.; Conklin, D.J.; O’Toole, T.E.; McCracken, J.; Lorkiewicz, P.; Xie, Z.; et al. Association between residential greenness and cardiovascular disease risk. J. Am. Heart Assoc. 2018, 7, e009117. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Webster, C.; Gallacher, J. Residential greenness and prevalence of major depressive disorders: A cross-sectional, observational, associational study of 94 879 adult UK biobank participants. Lancet Planet. Health 2018, 2, e162–e173. [Google Scholar] [CrossRef]
- Agay-Shay, K.; Michael, Y.; Basagana, X.; Martinez-Solanas, E.; Broday, D.; Lensky, I.M.; Rudolf, M.; Rubin, L.; Kent, R.; Levy, N.; et al. Mean and variance of greenness and pregnancy outcomes in Tel Aviv during 2000-14: Longitudinal and cross-sectional approaches. Int. J. Epidemiol. 2019, 48, 1054–1072. [Google Scholar] [CrossRef]
- Banay, R.F.; James, P.; Hart, J.E.; Kubzansky, L.D.; Spiegelman, D.; Okereke, O.L.; Spengler, J.D.; Laden, F. Greenness and depression incidence among older women. Environ. Health Perspect. 2019, 127, 027001. [Google Scholar] [CrossRef]
- De Keijzer, C.; Tonne, C.; Sabia, S.; Basagana, X.; Valentin, A.; Singh-Manoux, A.; Maria Anto, J.; Alonso, J.; Nieuwenhuijsen, M.J.; Sunyer, J.; et al. Green and blue spaces and physical functioning in older adults: Longitudinal analyses of the Whitehall II study. Environ. Int. 2019, 122, 346–356. [Google Scholar] [CrossRef]
- Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Perrino, T.; Lombard, J.; Rundek, T.; Wang, K.; Dong, C.; Gutierrez, C.M.; Toro, M.; Byrne, M.M.; Nardi, M.; Kardys, J.; et al. Neighbourhood greenness and depression among older adults. Br. J. Psychiatry 2019, 215, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Su, J.G.; Dadvand, P.; Nieuwenhuijsen, M.J.; Bartoll, X.; Jerrett, M. Associations of green space metrics with health and behavior outcomes at different buffer sizes and remote sensing sensor resolutions. Environ. Int. 2019, 126, 162–170. [Google Scholar] [CrossRef]
- Triebner, K.; Markevych, I.; Hustad, S.; Benediktsdottir, B.; Forsberg, B.; Franklin, K.A.; Gullon Blanco, J.A.; Holm, M.; Jaquemin, B.; Jarvis, D.; et al. Residential surrounding greenspace and age at menopause: A 20-year European study (ECRHS). Environ. Int. 2019, 132, 105088. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lombard, J.; Rundek, T.; Dong, C.; Gutierrez, C.M.; Byrne, M.M.; Toro, M.; Nardi, M.I.; Kardys, J.; Yi, L.; et al. Relationship of neighborhood greenness to heart disease in 249 405 US medicare beneficiaries. J. Am. Heart Assoc. 2019, 8, e010258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Dong, B.; Li, S.; Chen, G.; Yang, Z.; Dong, Y.; Wang, Z.; Ma, J.; Guo, Y. Exposure to ambient particulate matter air pollution, blood pressure and hypertension in children and adolescents: A national cross-sectional study in China. Environ. Int. 2019, 128, 103–108. [Google Scholar] [CrossRef]
- Yeager, R.; Riggs, D.W.; DeJarnett, N.; Srivastava, S.; Lorkiewicz, P.; Xie, Z.; Krivokhizhina, T.; Keith, R.J.; Srivastava, S.; Browning, M.H.E.M.; et al. Association between residential greenness and exposure to volatile organic compounds. Sci. Total Environ. 2020, 707, 135435. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Liu, P.; Wang, Y.; Zanobetti, A.; Kosheleva, A.; Koutrakis, P.; Schwartz, J. Chronic effects of temperature on mortality in the Southeastern USA using satellite-based exposure metrics. Sci. Rep. 2016, 6, 30161. [Google Scholar] [CrossRef]
- Sordillo, J.E.; Rifas-Shiman, S.L.; Switkowski, K.; Coull, B.; Gibson, H.; Rice, M.; Platts-Mills, T.A.E.; Kloog, I.; Litonjua, A.A.; Gold, D.R.; et al. Prenatal oxidative balance and risk of asthma and allergic disease in adolescence. J. Allergy Clin. Immunol. 2019, 144, 1534.e5–1541.e5. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L. Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP diet and health study. Environ. Res. 2020, 180, 108823. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W.; Pershagen, G.; Selander, J.; Houthuijs, D.; Breugelmans, O.; Cadum, E.; Vigna-Taglianti, F.; Katsouyanni, K.; Haralabidis, A.S.; Dimakopoulou, K.; et al. Noise annoyance—A modifier of the association between noise level and cardiovascular health? Sci. Total Environ. 2013, 452–453, 50–57. [Google Scholar] [CrossRef]
- Babisch, W.; Wolf, K.; Petz, M.; Heinrich, J.; Cyrys, J.; Peters, A. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: The KORA study. Environ. Health Perspect. 2014, 122, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Ritonja, J.; McIsaac, M.A.; Sanders, E.; Kyba, C.C.M.; Grundy, A.; Cordina-Duverger, E.; Spinelli, J.J.; Aronson, K.J. Outdoor light at night at residences and breast cancer risk in Canada. Eur. J. Epidemiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, F.; Kaaks, R.; Vainio, H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002, 3, 565–574. [Google Scholar] [CrossRef]
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef]
- Federenko, I.S.; Wadhwa, P.D. Women’s mental health during pregnancy influences fetal and infant developmental and health outcomes. CNS Spectr. 2004, 9, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S. The epidemiology of obesity and Asthma. J. Allergy Clin. Immunol. 2005, 115, 897–909. [Google Scholar] [CrossRef]
- Shore, S.A. Obesity and Asthma: Possible mechanisms. J. Allergy Clin. Immunol. 2008, 121, 1087–1093. [Google Scholar] [CrossRef]
- Liang, W.-M.; Wei, H.-Y.; Kuo, H.-W. Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environ. Res. 2009, 109, 51–58. [Google Scholar] [CrossRef]
- Gordon-Dseagu, V.L.Z.; Shelton, N.; Mindell, J. Diabetes mellitus and mortality from all-causes, cancer, cardiovascular and respiratory disease: Evidence from the health survey for England and Scottish health survey cohorts. J. Diabetes Complicat. 2014, 28, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardan, O.; Gozdyra, P.; Misic, B.; Moola, F.; Palmer, L.J.; Paus, T.; Berman, M.G. Neighborhood greenspace and health in a large urban center. Sci. Rep. 2015, 5, 11610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 5 June 2020).
- Kondo, M.C.; Triguero-Mas, M.; Donaire-Gonzalez, D.; Seto, E.; Valentín, A.; Hurst, G.; Carrasco-Turigas, G.; Masterson, D.; Ambròs, A.; Ellis, N.; et al. Momentary mood response to natural outdoor environments in four European cities. Environ. Int. 2020, 134, 105237. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Canning, D. Exposure to ambient fine particulate air pollution in utero as a risk factor for child stunting in Bangladesh. Int. J. Environ. Res. Public Health 2018, 15, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spears, D.; Dey, S.; Chowdhury, S.; Scovronick, N.; Vyas, S.; Apte, J. The association of early-life exposure to ambient PM2.5 and later-childhood height-for-age in India: An observational study. Environ. Health 2019, 18, 62. [Google Scholar] [CrossRef] [Green Version]
- Goyal, N.; Karra, M.; Canning, D. Early-life exposure to ambient fine particulate air pollution and infant mortality: Pooled evidence from 43 low-and middle-income countries. Int. J. Epidemiol. 2019, 48, 1125–1141. [Google Scholar] [CrossRef] [PubMed]
- Consonni, D.; Carugno, M.; De Matteis, S.; Nordio, F.; Randi, G.; Bazzano, M.; Caporaso, N.E.; Tucker, M.A.; Bertazzi, P.A.; Pesatori, A.C.; et al. Outdoor particulate matter (PM10) exposure and lung cancer risk in the EAGLE study. PLoS ONE 2018, 13, e0203539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanikachalam, M.; Fuller, C.H.; Lane, K.J.; Sunderarajan, J.; Harivanzan, V.; Brugge, D.; Thanikachalam, S. Urban environment as an independent predictor of insulin resistance in a South Asian population. Int. J. Health Geogr. 2019, 18, 5. [Google Scholar] [CrossRef]
- James, P.; Bertrand, K.A.; Hart, J.E.; Schernhammer, E.S.; Tamimi, R.M.; Laden, F. Outdoor light at night and breast cancer incidence in the nurses’ health study II. Environ. Health Perspect. 2017, 125, 087010. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sogno, P.; Traidl-Hoffmann, C.; Kuenzer, C. Earth Observation Data Supporting Non-Communicable Disease Research: A Review. Remote Sens. 2020, 12, 2541. https://doi.org/10.3390/rs12162541
Sogno P, Traidl-Hoffmann C, Kuenzer C. Earth Observation Data Supporting Non-Communicable Disease Research: A Review. Remote Sensing. 2020; 12(16):2541. https://doi.org/10.3390/rs12162541
Chicago/Turabian StyleSogno, Patrick, Claudia Traidl-Hoffmann, and Claudia Kuenzer. 2020. "Earth Observation Data Supporting Non-Communicable Disease Research: A Review" Remote Sensing 12, no. 16: 2541. https://doi.org/10.3390/rs12162541
APA StyleSogno, P., Traidl-Hoffmann, C., & Kuenzer, C. (2020). Earth Observation Data Supporting Non-Communicable Disease Research: A Review. Remote Sensing, 12(16), 2541. https://doi.org/10.3390/rs12162541