Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Landsat Images
2.1.2. Topographic Maps
2.1.3. SRTM
2.1.4. TanDEM-X
2.2. Glacier Outline Mapping, Changes and Uncertainty
2.3. Glacial Elevation Changes and Uncertainty
3. Results
3.1. Glacial Area Changes
3.2. Glacier Surface Elevation Changes
4. Discussion
4.1. Glacial Changes in WKL Compared with Others
4.2. Influencing Factors of Glacier Changes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the Elevation Effect, Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Ding, X.; Song, C. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote. Sens. Environ. 2005, 168, 13–23. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, S.; Huai, B.; An, W.; Pang, H.; Liu, Y. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote. Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Bao, W.; Liu, S.; Wei, J.; Guo, W. Glacier changes during the past 40 years in the West Kunlun Shan. J. Mt. Sci. 2005, 12, 344–357. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Li, J.; Zhang, Y.; Ding, L.; Wang, X.; Xie, C.; Li, G. Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Ann. Glaciol. 2007, 46, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Han, Y. Research on Glacier Change in the West Kunlun Mountains and Flow Velocity Estimation Based on Landsat Images (1977–2013); Nanjing University: Nanjing, China, 2015. (In Chinese) [Google Scholar]
- Ma, Q. Monitoring Glacier Change on West Kunlun Shan Based on Multi-Source Remote Sensing Data; Nanjing University: Nanjing, China, 2018. (In Chinese) [Google Scholar]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yu, Z.; Yang, M.; Ito, E.; Wang, S.; Madsen, D.B.; Huang, X.; Zhao, Y.; Sato, T.; Birks, H.J.B.; et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 2008, 27, 351–364. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S. Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull. 2000, 45, 668–672. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote. Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Wei, J.; Liu, S. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote. Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, D.H.; Bolch, T.; Ding, Y.J.; Kröhnert, M.; Pieczonka, T.; Wetzel, H.U.; Liu, S.Y. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during—1975 and 2007 derived from remote sensing data. Cryosphere 2015, 9, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Morris, C.S.; Belz, Z.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote. Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Rodriguez Gonzalez, F.; Fritz, T.; Yague-Martinez, N.; Eineder, M. TanDEM-X calibrated Raw DEM generation. ISPRS J. Photogramm. Remote. Sens. 2012, 73, 12–20. [Google Scholar] [CrossRef]
- Gruber, A.; Wessel, B.; Huber, M.; Roth, A. Operational TanDEM-X DEM calibration and first validation results. ISPRS J. Photogramm. Remote. Sens. 2012, 73, 39–49. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Han, H.; Tian, B.; Zhou, J. Analysis of thickness changes and the associated driving factors on a debris-covered glacier in the Tienshan Mountain. Remote. Sens. Environ. 2018, 206, 63–71. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Li, W.; Qiu, B. Remote Sensing of Glacier Change in the Central Qinghai-Tibet Plateau and the Relationship with Changing Climate. Remote. Sens. 2017, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote. Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote. Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liu, S.; Guo, W.; Yao, X.; Xu, J.; Weijia, B.; Zongli, J. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol. 2014, 55, 213–222. [Google Scholar]
- Zhang, Z.; Liu, S.; Wei, J.; Xu, J.; Guo, W.; Bao, W.; Jiang, Z. Mass Change of Glaciers in Muztag Ata–Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data. PLoS ONE 2016, 11, e0147327. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Schiefer, E.; Clarke, G.K.C.; Menounos, B.; Remy, F. Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci. 2010, 3, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liu, S.; Guo, W.; Xu, J.; Bao, W.; Donghui, S. Changes in Glacier Volume in the North Bank of the Bangong Co Basin from 1968 to 2007 Based on Historical Topographic Maps, SRTM, and ASTER Stereo Images. Arct. Antarct. Alp. Res. 2015, 47, 301–311. [Google Scholar]
- Berthier, E.; Arnaud, Y.; Vincent, C.; Rémy, F. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophys. Res. Lett. 2006, 33, L08502. [Google Scholar] [CrossRef]
- Paul, F. Calculation of glacier elevation changes with SRTM: Is there an elevation-dependent bias? J. Glaciol. 2008, 55, 945–946. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Huss, M.; Hoelzle, M. Surface elevation and mass changes of all Swiss glaciers 1980–2010. Cryosphere 2015, 9, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Barandun, M.; Huss, M.; Sold, L.; Farinotti, D.; Azisov, E.; Salzmann, N.; Usubaliev, R.; Merkushkin, A.; Hoelzle, M. Re-analysis of seasonal mass balance at Abramov glacier 1968–2014. J. Glaciol. 2015, 61, 1103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, S.; Zhang, Y.; Wei, J.; Jiang, Z.; Wu, K. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. J. Glaciol. 2018, 64, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Pan, B.; Wen, Z.; Guan, W.; Li, K. Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote sensing data and modeling. J. Hydrol. 2019, 578, 124010. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Pan, B.; Guan, W.; Wen, Z.; Wang, J. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the analysis of multi-temporal DEMs from 1966 to 2015. J. Glaciol. 2019, 65, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier Mass Changes on the Tibetan Plateau 2003–2009 Derived from ICESat Laser Altimetry Measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of glacier mass balance and related terms. In IHP-VII Technical Documents in Hydrology No 86 IACS Contribution No 2; UNESCO-IHP: Paris, France, 2011. [Google Scholar]
- Zhang, Z.; Jiao, K. Modern glaciers on the south slope of West Kunlun Mountains (in Aksayqin Lake and Guozha Co Lake drainage areas). Bull. Glacier Res. 1987, 5, 85–91. [Google Scholar]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
Sensors | Path/Row | Date | Resolution (m) | Area | DEM |
---|---|---|---|---|---|
Landsat MSS | P145/R35 | 1972/12/01 | 60 | √ | |
Landsat MSS | P145/R36 | 1972/12/01 | 60 | √ | |
Landsat MSS | P145/R35 | 1976/11/1 | 60 | √ | |
Landsat MSS | P145/R36 | 1976/11/1 | 60 | √ | |
Landsat TM | P145/R35 | 1991/2/3 | 30 | √ | |
Landsat TM | P145/R36 | 1991/2/3 | 30 | √ | |
Landsat TM | P145/R35 | 1995/12/31 | 30 | √ | |
Landsat TM | P145/R36 | 1995/12/31 | 30 | √ | |
Landsat ETM+ | P145/R35 | 2000/12/4 | 30(Multi)15(Pan) | √ | |
Landsat ETM+ | P145/R36 | 2000/12/4 | 30(Multi)15(Pan) | √ | |
Landsat ETM+ | P145/R35 | 2005/11/16 | 30(Multi)15(Pan) | √ | |
Landsat ETM+ | P145/R36 | 2005/11/16 | 30(Multi)15(Pan) | √ | |
Landsat TM | P145/R35 | 2010/12/8 | 30 | √ | |
Landsat TM | P145/R36 | 2010/12/8 | 30 | √ | |
Landsat OLI | P145/R35 | 2010/12/8 | 30(Multi)15(Pan) | √ | |
Landsat OLI | P145/R36 | 2010/12/8 | 30(Multi)15(Pan) | √ | |
Landsat OLI | P145/R35 | 2015/12/6 | 30(Multi)15(Pan) | √ | |
Landsat OLI | P145/R36 | 2015/12/6 | 30(Multi)15(Pan) | √ | |
Topographic maps | 1970.10 | √ | |||
SRTM | 2000.2 | 30 | √ | ||
TanDEM-X | 2014–2018 | 12 | √ |
Time | North Slope | South Slope | Total WKL | |||
---|---|---|---|---|---|---|
Area | Area Change | Area | Area Change | Area | Area Change | |
(km2) | (km2) | (km2) | (km2) | (km2) | (km2) | |
1972/12/1 | 1821.9 | 0 | 1143.5 | 0 | 2965.4 | 0 |
1976/11/1 | 1820.54 | −1.4 | 1140.1 | −3.3 | 2960.6 | −4.7 |
1991/2/3 | 1816.4 | −5.5 | 1136.9 | −6.5 | 2953.3 | −12.0 |
1995/12/31 | 1814.4 | −7.5 | 1139.5 | −4.0 | 2953.9 | −11.5 |
2000/12/4 | 1813.5 | −8.5 | 1141.8 | −1.7 | 2955.3 | −10.2 |
2005/11/16 | 1811.9 | −10.0 | 1143.1 | −0.4 | 2955.0 | −10.4 |
2010/12/8 | 1810.1 | −11.8 | 1142.6 | −0.9 | 2952.7 | −12.7 |
2015/12/6 | 1813.8 | −8.10 | 1141.8 | −1.7 | 2955.6 | −9.8 |
2018/11/12 | 1816.0 | −6.0 | 1141.4 | −2.0 | 2957.4 | −8.0 |
Time Intervals | North Slope Mean Elevation Change (m) | North Slope Mass Loss Rate (m w.e. a−1) | South Slope Mean Elevation Change (m) | South Slope Mass Loss Rate (m w.e. a−1) | Whole Mean Elevation Change (m) | Mass Loss Rate (m w.e. a−1) |
---|---|---|---|---|---|---|
1970–2000 | −4.9 | −0.14 | 1.3 | 0.03 | −2.5 | −0.07 |
2000–2016 | 0.4 | 0.02 | 1.1 | 0.06 | 0.6 | 0.03 |
1970–2016 | −4.5 | −0.08 | 2.4 | 0.04 | −1.9 | −0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.; Guan, W.; Li, K.; Wen, Z.; Han, H.; Pan, B. Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sens. 2020, 12, 2632. https://doi.org/10.3390/rs12162632
Cao B, Guan W, Li K, Wen Z, Han H, Pan B. Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sensing. 2020; 12(16):2632. https://doi.org/10.3390/rs12162632
Chicago/Turabian StyleCao, Bo, Weijin Guan, Kaiji Li, Zhenling Wen, Hui Han, and Baotian Pan. 2020. "Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018" Remote Sensing 12, no. 16: 2632. https://doi.org/10.3390/rs12162632
APA StyleCao, B., Guan, W., Li, K., Wen, Z., Han, H., & Pan, B. (2020). Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sensing, 12(16), 2632. https://doi.org/10.3390/rs12162632