Primary Evaluation of the GCOM-C Aerosol Products at 380 nm Using Ground-Based Sky Radiometer Observations
Abstract
:1. Introduction
2. Ground-Based Observations
3. Datasets and Methods
3.1. Satellite Dataset
3.1.1. GCOM-C Data
3.1.2. GCOM-C Aerosol Retrieval
- (a)
- Pre-retrieval calculated parameters
- (b)
- Retrieval of aerosol optical and physical properties
3.1.3. OMI Aerosol Product
3.2. Ground-Based Dataset
3.2.1. Sky Radiometer Observations of Aerosol Optical Properties
3.2.2. MAX-DOAS Observations of Aerosol and Trace Gases
3.2.3. AERONET Aerosol Data
3.3. Methods
3.3.1. Sky Radiometer and AERONET Observations in Chiba
3.3.2. Sky Radiometer and MAX-DOAS Observations in Phimai
4. Results
4.1. Evaluation of GCOM-C Data
4.2. Potential Reasons for the Differences in the AOT Values other than Cloud Influence
4.2.1. Aerosol Composition in Chiba
4.2.2. Impact of Aerosol Composition Change on the Observed Differences in the Datasets in Chiba
4.2.3. Biomass Burning Influence at the Phimai Site
4.3. Diurnal Variation of AOT at 380 nm Inferred from GCOM-C and OMI Observations
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Chen, L.; Wang, Z.; Tao, J.; Su, L. Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season. Atmos. Environ. 2013, 79, 632–640. [Google Scholar] [CrossRef]
- IPPC. Climate Change 2013: The Physical Basis. In Contribution of the Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Space Phys. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Tanré, D.; Nakajima, T. Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. Bull. Am. Meteorol. Soc. 1999, 80, 2229–2259. [Google Scholar] [CrossRef] [Green Version]
- Mishchenko, M.; Penner, J.; Anderson, D. Global Aerosol Climatology Project. J. Atmos. Sci. 2002, 59, 249. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Space Phys. 2007, 112, 24. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.; Torres, O.; Jethva, H. Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res. Atmos. 2014, 119, 2457–2473. [Google Scholar] [CrossRef] [Green Version]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. Space Phys. 2004, 109, 21208. [Google Scholar] [CrossRef] [Green Version]
- Saleh, R.; Robinson, E.S.; Tkacik, D.S.; Ahern, A.T.; Liu, S.; Aiken, A.C.; Sullivan, R.C.; Presto, A.A.; Dubey, M.K.; Yokelson, R.J.; et al. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nat. Geosci. 2014, 7, 647–650. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivations of aerosol optical properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 23321. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Bhartia, P.K.; Sinyuk, A.; Welton, E.J.; Holben, B. Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 ground-based observations. J. Geophys. Res. Space Phys. 2005, 110, 10. [Google Scholar] [CrossRef] [Green Version]
- Jethva, H.; Torres, O.; Ahn, C. Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion. J. Geophys. Res. Atmos. 2014, 119, 9020–9040. [Google Scholar] [CrossRef]
- Ahn, C.; Torres, O.; Bhartia, P.K. Comparison of Ozone Monitoring Instrument UV Aerosol Products with Aqua/Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer observations in 2006. J. Geophys. Res. Space Phys. 2008, 113, 16. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.; Eck, T.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Irie, H.; Hoque, H.M.S.; Damiani, A.; Okamoto, H.; Fatmi, A.M.; Khatri, P.; Takamura, T.; Jarupongsakul, T. Simultaneous observations by sky radiometer and MAX-DOAS for characterization of biomass burning plumes in central Thailand in January–April 2016. Atmos. Meas. Tech. 2019, 12, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Hönninger, G.; Von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. Discuss. 2004, 4, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer in Tsukuba, Japan. Atmos. Meas. Tech. Discuss. 2015, 8, 1013–1054. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for Imaging Satellite Sensors. J. Meteorol. Soc. Jpn. 2018, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Hoque, H.M.S.; Irie, H.; Damiani, A. First MAX-DOAS Observations of Formaldehyde and Glyoxal in Phimai, Thailand. J. Geophys. Res. Atmos. 2018, 123, 9957–9975. [Google Scholar] [CrossRef]
- Hori, M.; Murakami, H.; Miyazaki, R.; Honda, Y.; Nasahara, K.; Kajiwara, K.; Nakajima, T.Y.; Irie, H.; Toratani, M.; Hirawake, T.; et al. GCOM-C Data Validation Plan for Land, Atmosphere, Ocean, and Cryosphere. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2018, 16, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- Letu, H.; Ishimoto, H.; Riedi, J.; Nakajima, T.Y.; C.-Labonnote, L.; Baran, A.J.; Nagao, T.M.; Sekiguchi, M. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmos. Chem. Phys. Discuss. 2016, 16, 12287–12303. [Google Scholar] [CrossRef]
- Mukai, S.; Sano, I. Retrieval algorithm for atmospheric aerosols based on multi-angle viewing of ADEOS/POLDER. Earth Planets Space 1999, 51, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Gleason, J.; Ahmad, Z. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Nakajima, T.Y.; Tsuchiya, T.; Ishida, H.; Matsui, T.N.; Shimoda, H. Cloud detection performance of space borne visible-to-infrared multispectral imagers. Appl. Opt. 2011, 50, 2601–2616. [Google Scholar] [CrossRef] [Green Version]
- Letu, H.; Nakajima, T.Y.; Matsui, T.N. Development of an ice crystal scattering database for the global change observation mission/second generation global imager satellite mission: Investigating the refractive index grid system and potential retrieval error. Appl. Opt. 2012, 51, 6172–6178. [Google Scholar] [CrossRef]
- Nakajima, T.; Tanaka, M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transf. 1986, 35, 13–21. [Google Scholar] [CrossRef]
- Nakajima, T.; Tanaka, M. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transf. 1988, 40, 51–69. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.H.; Won, J.; Winker, D.M.; Yoon, S.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Sayer, A.; Smirnov, A.; Hsu, N.C.; Holben, B.N. A pure marine aerosol model, for use in remote sensing applications. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Tanaka, M.; Yamano, M.; Shiobara, M.; Arao, K.; Nakanishi, Y. Aerosol Optical Characteristics in the Yellow Sand Events Observed in May, 1982 at Nagasaki-Part II Models. J. Meteorol. Soc. Jpn. 1989, 67, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Ishida, H.; Nakajima, T.Y. Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res. Space Phys. 2009, 114, 7. [Google Scholar] [CrossRef]
- Ishida, H.; Nakajima, T.Y.; Yokota, T.; Kikuchi, N.; Watanabe, H. Investigation of GOSAT TANSO-CAI Cloud Screening Ability through an Intersatellite Comparison. J. Appl. Meteorol. Clim. 2011, 50, 1571–1586. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; Scientific World: Singapore, 2000. [Google Scholar]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Bhartia, P.K.; Jethva, H.; Ahn, C. Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products. Atmos. Meas. Tech. 2018, 11, 2701–2715. [Google Scholar] [CrossRef] [Green Version]
- Jethva, H.; Torres, O. Satellite-Based evidence of wavelength-dependent aerosol absorption in biomass. burning smoke inferred from Ozone Monitoring Instrument. Atmos. Chem. Phys. 2012, 11, 10541–10551. [Google Scholar] [CrossRef] [Green Version]
- Mok, J.; Krotkov, N.A.; Torres, O.; Jethva, H.; Li, Z.; Kim, J.; Koo, J.; Go, S.; Irie, H.; Labow, G. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea. Atmos. Meas. Tech. 2018, 11, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Nakajima, T.; Dubovik, O.; Campanelli, M.; Che, H.; Khatri, P.; Takamura, T.; Pandithurai, G. Development of a new data-processing method for SKYNET sky radiometer observations. Atmos. Meas. Tech. 2012, 5, 2723–2737. [Google Scholar] [CrossRef] [Green Version]
- Campanelli, M.; Estellés, V.; Tomasi, C.; Nakajima, T.; Malvestuto, V.; Martinez-Lozano, J.A. Application of the SKYRAD Improved Langley plot method for the in situ calibration of CIMEL Sun-sky photometers. Appl. Opt. 2007, 46, 2688–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, T.; Tonna, G.; Rao, R.; Boi, P.; Kaufman, Y.; Holben, B. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Opt. 1996, 35, 2672. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, A.; Matsunaga, T.; Yamazaki, A. The instrument constant of sky radiometers (POM-02), Part II: Solid view angle 2. Atmos. Meas. Tech. 2018, 11, 5389–5402. [Google Scholar] [CrossRef] [Green Version]
- Khatri, P.; Takamura, T. An Algorithm to Screen Cloud-Affected Data for Sky Radiometer Data Analysis. J. Meteorol. Soc. Jpn. 2009, 87, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Kurucz, R.L. Solar Flux Atlas from 296 to 1300 nm; National Solar Observatory: Sunspot, NM, USA, 1984; Volume 240. [Google Scholar]
- Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K.F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; Van Roozendael, M. Eight-component retrievals from ground-based MAX-DOAS observations. Atmos. Meas. Tech. 2011, 4, 1027–1044. [Google Scholar] [CrossRef] [Green Version]
- Platt, U.; Stutz, J. Dirrefential Optical Absorption Spectrocopy; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Irie, H.; Kanaya, Y.; Akimoto, H.; Iwabuchi, H.; Shimizu, A.; Aoki, K. First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements. Atmos. Chem. Phys. Discuss. 2008, 8, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Irie, H.; Kanaya, Y.; Akimoto, H.; Tanimoto, H.; Wang, Z.; Gleason, J.F.; Bucsela, E.J. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006. Atmos. Chem. Phys. Discuss. 2008, 8, 8243–8271. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Scafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancement in the Aerosol Robotic Network (AERONET) Versiom 3 database-automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Chem. Phys. 2019, 12, 169–209. [Google Scholar]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; Decarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemenn, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. Discuss. 2010, 10, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Lu, H.; Yi, S.; Xu, Z.; Zhou, Y.; Zeng, L.; Zhu, F.; Feng, H.; Dong, L.; Zhuo, H.; Yu, K.; et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum. Chin. Sci. Bull. 2013, 58, 2775–2783. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhang, Y.; He, K.; Zhou, J.; Kang, C. Features of sand-dust deposits in Harbin city, China. Chin. Geogr. Sci. 2006, 16, 327–333. [Google Scholar] [CrossRef]
- Sugimoto, N.; Shimizu, A.; Nishizawa, T.; Matsui, I.; Jin, Y.; Khatri, P.; Irie, H.; Takamura, T.; Aoki, K.; Thana, B. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie–Raman lidar and a sky radiometer. Environ. Res. Lett. 2015, 10, 065003. [Google Scholar] [CrossRef]
- Campbell, J.R.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Tackett, J.L.; Chew, B.N.; Welton, E.J.; Shimizu, A.; Sugimoto, N.; Aoki, K.; et al. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP. Atmos. Res. 2013, 122, 520–543. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.-M.; Jacob, D.J.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. Space Phys. 2008, 113, 15. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, L.; Richter, A.; Vrekoussis, M.; Wittrock, F.; Hilboll, A.; Schreier, S.; Burrows, J. An improved glyoxal retrieval from OMI measurements. Atmos. Meas. Tech. 2014, 7, 4133. [Google Scholar] [CrossRef] [Green Version]
- Vakkari, V.; Kerminen, V.-M.; Beukes, J.P.; Tiitta, P.; Van Zyl, P.G.; Josipovic, M.; Venter, A.D.; Jaars, K.; Worsnop, D.R.; Kulmala, M.; et al. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 2014, 41, 2644–2651. [Google Scholar] [CrossRef] [Green Version]
- Khatri, P.; Takamura, T.; Nakajima, T.; Estellés, V.; Irie, H.; Kuze, H.; Campanelli, M.; Sinyuk, A.; Lee, S.-M.; Sohn, B.J.; et al. Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET. J. Geophys. Res. Atmos. 2016, 121, 1859–1877. [Google Scholar] [CrossRef] [Green Version]
Dataset | Uncertainty in the Retrieved Product | Reference |
---|---|---|
GCOM-C AOT at 380 nm | ±0.15 | Yoshida et al. [21] |
OMI AOT at 380 nm | ±0.10 | Ahn et al. [9] |
SKYNET AOT at 380, 500, and 675 nm | ±0.02 | Irie et al. [18] |
AERONET AOT at 380, 500, and 675 nm | ±0.02 | Holben et al. [17] |
MAX-DOAS AOT at 476 nm | ±0.05 | Irie et al. [20] |
MAX-DOAS CHOCHO VCD | 20 % (Total error) | Hoque et al. [22] |
Channel | Center Wavelength (nm) | Bandwidth (nm) | Lstd | SNR | IFOV (m) |
---|---|---|---|---|---|
VNR1 | 380 | 10 | 60 W/m2/sr/µm | 250 | 250 |
VNR2 | 412 | 10 | 75 W/m2/sr/µm | 400 | 250 |
VNR3 | 443 | 10 | 64 W/m2/sr/µm | 300 | 250 |
VNR4 | 490 | 10 | 53 W/m2/sr/µm | 400 | 250 |
VNR5 | 530 | 20 | 41 W/m2/sr/µm | 250 | 250 |
VNR6 | 565 | 20 | 33 W/m2/sr/µm | 400 | 250 |
VNR7 | 673 | 20 | 23 W/m2/sr/µm | 400 | 250 |
VNR8 | 673 | 20 | 25 W/m2/sr/µm | 250 | 250 |
VNR9 | 763 | 12 | 40 W/m2/sr/µm | 1200 | 1000 |
VNR10 | 868 | 20 | 8 W/m2/sr/µm | 400 | 250 |
VNR11 | 868 | 20 | 30 W/m2/sr/µm | 200 | 250 |
P1 | 673 | 20 | 25 W/m2/sr/µm | 250 | 1000 |
P2 | 868 | 20 | 30 W/m2/sr/µm | 250 | 1000 |
SW1 | 1050 | 20 | 57 W/m2/sr/µm | 500 | 1000 |
SW2 | 1380 | 20 | 8 W/m2/sr/µm | 150 | 1000 |
SW3 | 1630 | 200 | 3 W/m2/sr/µm | 57 | 250 |
SW4 | 2210 | 50 | 1.9 W/m2/sr/µm | 211 | 1000 |
T1 | 10,800 | 740 | 300 K | 0.2 | 500 |
T2 | 12,000 | 740 | 300 K | 0.2 | 500 |
Channel | On-orbit Calibration | Calibration Maneuver | ||||||
---|---|---|---|---|---|---|---|---|
Solar Diffuser | Internal Lamp | Dark Image | Black Body | Deep Space | Lunar Calibration | Solar Angle Correction | 90-Deg Yaw Maneuver | |
VNR | 1/8 days | 1/8 days | 1/8 days | None | None | 1/month | 1/year | 1/year |
SWIR | 1/8 days | 1/8 days | 1/8 days | None | Per scan | 1/month | 1/year | None |
TIR | None | None | None | Per scan | Per scan | 1/month | None | None |
Range of AOT Simulated | Aerosol Type | Reference | Volume Mean Radius |
---|---|---|---|
0–2.0 | Fine-mode aerosol | Omar et al. [33] | 0.143 ± 1.58 µm |
Dust aerosol | Omar et al. [33] | 2.834 ± 1.90 µm | |
Coarse-mode aerosol | Sayer et al. [34] | 2.59 ± 2.05 µm |
Site | Clear Sky | Cloudy | Total Retrieved Data Points |
---|---|---|---|
Chiba | 7072 | 1604 | 8676 |
Phimai | 5140 | 879 | 6019 |
Wavelength (nm) | SKYNET | AERONET | Number of Data Points | Correlation Coefficient (R) | Slope | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
380 | 0.31 | 0.18 | 0.3 | 0.18 | 1782 | 0.99 | 0.996 |
500 | 0.18 | 0.11 | 0.18 | 0.11 | 1061 | 0.99 | 0.997 |
675 | 0.11 | 0.07 | 0.11 | 0.07 | 1061 | 0.99 | 0.993 |
Sky Radiometer AOT at 476 nm | MAX-DOAS AOT at 476 nm | Number of Data | Mean Bias Error (Sky Radiometer–MAX-DOAS) | Correlation Coefficient (R) |
---|---|---|---|---|
0.57 ± 0.31 | 0.54 ± 0.26 | 109 | 0.02 | 0.73 |
Date | Sky Radiometer AOT | GCOM-C AOT | AOT Difference |
---|---|---|---|
22 April 2019 | 0.93 | 0.56 | 0.39 |
8 March 2019 | 0.12 | 0.12 | 0 |
Site | Parameter | ≤10 km | ≤20 km | ≤40 km | ≤50 km | ≤70 km | ≤90 km |
---|---|---|---|---|---|---|---|
Chiba | MBE | −0.02 | −0.04 | −0.07 | −0.07 | −0.08 | −0.08 |
RMSE | 0.17 | 0.16 | 0.17 | 0.18 | 0.22 | 0.22 | |
Slope | 0.88 | 0.83 | 0.78 | 0.77 | 0.7 | 0.7 | |
R | 0.73 | 0.76 | 0.78 | 0.78 | 0.62 | 0.6 | |
N | 41 | 42 | 47 | 48 | 54 | 56 | |
Phimai | MBE | −0.19 | −0.19 | −0.20 | −0.20 | −0.20 | −0.21 |
RMSE | 0.36 | 0.36 | 0.37 | 0.36 | 0.38 | 0.39 | |
Slope | 0.65 | 0.64 | 0.63 | 0.62 | 0.61 | 0.6 | |
R | 0.78 | 0.75 | 0.73 | 0.71 | 0.7 | 0.69 | |
N | 28 | 30 | 33 | 33 | 34 | 34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, H.M.S.; Irie, H.; Damiani, A.; Momoi, M. Primary Evaluation of the GCOM-C Aerosol Products at 380 nm Using Ground-Based Sky Radiometer Observations. Remote Sens. 2020, 12, 2661. https://doi.org/10.3390/rs12162661
Hoque HMS, Irie H, Damiani A, Momoi M. Primary Evaluation of the GCOM-C Aerosol Products at 380 nm Using Ground-Based Sky Radiometer Observations. Remote Sensing. 2020; 12(16):2661. https://doi.org/10.3390/rs12162661
Chicago/Turabian StyleHoque, Hossain Mohammed Syedul, Hitoshi Irie, Alessandro Damiani, and Masahiro Momoi. 2020. "Primary Evaluation of the GCOM-C Aerosol Products at 380 nm Using Ground-Based Sky Radiometer Observations" Remote Sensing 12, no. 16: 2661. https://doi.org/10.3390/rs12162661
APA StyleHoque, H. M. S., Irie, H., Damiani, A., & Momoi, M. (2020). Primary Evaluation of the GCOM-C Aerosol Products at 380 nm Using Ground-Based Sky Radiometer Observations. Remote Sensing, 12(16), 2661. https://doi.org/10.3390/rs12162661