Evaluation of a Microwave Emissivity Module for Snow Covered Area with CMEM in the ECMWF Integrated Forecasting System
Abstract
:1. Introduction
2. Data And Methods
2.1. Gcom-W AMSR2 Brightness Temperature Observations
2.2. Observation Operator Rttov
2.3. Ecmwf Land Surface Model
2.4. The Community Microwave Emission Modelling Platform
2.4.1. Cmem Soil Module
2.4.2. Cmem Vegetation Module
2.4.3. Cmem Snow Module
2.4.4. Cmem Atmospheric Module
2.4.5. Cmem-Rttov Interface in The Ifs
2.5. Numerical Experiments
2.5.1. Offline Experiments
- ML5: inputs H-TESSEL results created by the multi-layer snow scheme up to 5 layers.
- SL1: inputs H-TESSEL results created by the single-layer snow scheme.
- ML1: inputs H-TESSEL results created by the multi-layer snow scheme up to 5 layers. The multi-layer snow fields are aggregated in a single-layer to represent the bulk properties of the snowpack [14]. Regarding the temperature, this is the temperature corresponding to the total heat (cold) content of the snowpack.
- TSO: soil temperature at the top layer is used as an approximation for high vegetation (covering the snow surface) canopy temperature similarly to the default setting of CMEM v5.1.
- ICE: dielectric constant of ice is used for cold vegetation similarly to the default setting of CMEM v5.1.
- KOU: Kou model about dielectric constant of vegetation is used for cold vegetation.
- NOH: simulations assume that there is no vegetation on the snow.
2.5.2. Coupled Experiments with Cmem-Rttov in the IFS
3. Results And Discussion
3.1. Offline Experiments
3.1.1. Global Distributions
3.1.2. Impact of Multi-Layer Snow
3.1.3. Impact of High Vegetation Over Snow
3.1.4. Coupled Experiments with Cmem-Rttov in the Ifs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMSR2 | Advanced Microwave Scanning Radiometer 2 |
AMSU-A | Advanced Microwave Sounding Unit-A |
ATMS | Advanced Technology Microwave Sounder |
CMEM | Community Microwave Emission Modelling platform |
CRTM | Community Radiative Transfer Model |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GCOM-W | Global Change Observation Mission-Water |
H-TESSEL | Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land |
HUT | Helsinki University of Technology |
IFS | Integrated Forecast System |
JAXA | Japan Aerospace Exploration Agency |
JMA | Japan Meteorological Agency |
MHS | Microwave Humidity Sounder |
NWP | Numerical Weather Prediction |
RTTOV | Radiative Transfer for TOVS |
SMOS | Soil Moisture and Ocean Salinity |
SSM/I | Special Sensor Microwave Imager |
SSMIS | Special Sensor Microwave Imager/Sounder |
TB | brightness temperature |
TELSEM | Tool to Estimate Land Surface Emissivities at Microwave Frequencies |
TELSEM | Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter Waves |
TOA | Top of Atmosphere |
TOVS | TIROS Operational Vertical Sounder |
UN-FAO | United Nations-Food and Agriculture Organization |
USGS-GLCC | United States Geophysical Survey-Global Land Cover Classification |
References
- Grody, N. Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Krzeminski, B.; Bormann, N.; Karbou, F.; Bauer, P. Improved use of surface sensitive microwave radiances over land at ECMWF. In Proceedings of the EUMETSAT Meteorological Satellite Conference, EUMETSAT, Darmstadt, Germany, 21–25 September 2009. [Google Scholar]
- Geer, A.J.; Baordo, F.; Bormann, N.; English, S. All-Sky Assimilation of Microwave Humidity Sounders; ECMWF Technical Memorandum Number 741; ECMWF: Reading, UK, 2014. [Google Scholar]
- Baordo, F.; Geer, A.J. Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval. Q. J. R. Meteorol. Soc. 2016, 142, 2854–2866. [Google Scholar] [CrossRef]
- Bormann, N.; Lupu, C.; Geer, A.; Lawrence, H.; Weston, P.; English, S. Assessment of the Forecast Impact of Surface-Sensitive Microwave Radiances Over Land and Sea-Ice; ECMWF Technical Memorandum Number 804; ECMWF: Reading, UK, 2017. [Google Scholar]
- Karbou, F.; Gérard, E.; Rabier, F. Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land. Q. J. R. Meteorol. Soc. 2006, 132, 2333–2355. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Liang, P.; Tian, Y.; Aires, F.; Moncet, J.L.; Boukabara, S.A. Evaluation of modeled microwave land surface emissivities with satellite-based estimates. J. Geophys. Res. Atmos. 2015, 120, 2706–2718. [Google Scholar] [CrossRef]
- de Rosnay, P.; Muñoz-Sabater, J.; Albergel, C.; Isaksen, L.; English, S.; Drusch, M.; Wigneron, J.P. SMOS brightness temperature forward modelling and long term monitoring at ECMWF. Remote Sens. Environ. 2020, 237, 111424. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Lawrence, H.; Albergel, C.; de Rosnay, P.; Isaksen, L.; Drusch, M.; Kerr, Y.; Mecklenburg, S. Assimilation of SMOS brightness temperature in the ECMWF Integrated Forecasting System. Q. J. R. Meteorol. Soc. 2019. [Google Scholar] [CrossRef]
- Pulliainen, J.; Hallikainen, M.; Grandell, J. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1378–1390. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; de Rosnay, P.; et al. ERA-Interim/Land: A global land water resources dataset. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Balsamo, G.; Viterbo, P.; Beljaars, A.; van den Hurk, B.; Hirsch, M.; Betts, A.; Scipal, K. A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Itegrated Forecast System. J. Hydrometeorol. 2009, 10, 623–643. [Google Scholar] [CrossRef]
- Dutra, E.; Balsamo, G.; Viterbo, P.; Miranda, P.; Beljaars, A.; Schär, C.; Elder, K. An improved snow scheme for the ecmwf land surface model: Description and offline validation. J. Hydrometeorol. 2010, 11, 899–916. [Google Scholar] [CrossRef]
- Arduini, G.; Balsamo, G.; Dutra, E.; Day, J.J.; Sandu, I.; Boussetta, S.; Haiden, T. Impact of a Multi-Layer Snow Scheme on Near-Surface Weather Forecasts. J. Adv. Model. Earth Syst. 2019, 11, 4687–4710. [Google Scholar] [CrossRef]
- Saunders, R.; Matricardi, M.; Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 1999, 125, 1407–1425. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Prigent, C.; Kilic, L.; Fox, S.; Harlow, C.; Jimenez, C.; Aires, F.; Grassotti, C.; Karbou, F. Surface Emissivity at Microwaves to Millimeter Waves over Polar Regions: Parameterization and Evaluation with Aircraft Experiments. J. Atmos. Ocean. Technol. 2017, 34, 1039–1059. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- JAXA. GCOM-W1 SHIZUKU Data Users Handbook, 1st ed.; Japan Aerospace Exploration Agency: Tokyo, Japan, 2013. [Google Scholar]
- Geer, A.J.; Bauer, P.; Lopez, P. Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Q. J. R. Meteorol. Soc. 2010, 136, 1886–1905. [Google Scholar] [CrossRef]
- Kazumori, M.; Geer, A.J.; English, S.J. Effects of all-sky assimilation of GCOM-W/AMSR2 radiances in the ECMWF numerical weather prediction system. Q. J. R. Meteorol. Soc. 2016, 142, 721–737. [Google Scholar] [CrossRef]
- Bauer, P.; Moreau, E.; Chevallier, F.; O’keeffe, U. Multiple-scattering microwave radiative transfer for data assimilation applications. Q. J. R. Meteorol. Soc. 2006, 132, 1259–1281. [Google Scholar] [CrossRef] [Green Version]
- Aires, F.; Prigent, C.; Bernardo, F.; Jiménez, C.; Saunders, R.; Brunel, P. A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 690–699. [Google Scholar] [CrossRef] [Green Version]
- de Rosnay, P.; Balsamo, G.; Albergel, C.; Muñoz-Sabater, J.; Isaksen, L. Initialisation of land surface variables for Numerical Weather Prediction. Surv. Geophys. 2014, 35, 607–621. [Google Scholar] [CrossRef]
- de Rosnay, P.; Isaksen, L.; Dahoui, L. Snow Data Assimilation at ECMWF; ECMWF Newsletter no 143; ECMWF: Reading, UK, 2015; pp. 26–31. [Google Scholar]
- Lovel, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.W.; Merchant, J.W. Development of a global land cover characteristics database and IGB6Cover from the 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar]
- FAO. FAO Digital Soil Map of the World (DSMW); Technical Report of the United Nations; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- de Rosnay, P.; Drusch, M.; Boone, A.; Balsamo, G.; Decharme, B.; Harris, P.; Kerr, Y.; Pellarin, T.; Polcher, J.; Wigneron, J.P. Microwave Land Surface modelling evaluation against AMSR-E data over West Africa. The AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model (ALMIP-MEM). J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Drusch, M.; Holmes, T.; de Rosnay, P.; Balsamo, G. Comparing ERA-40 based L-band brightness temperatures with Skylab observations: A calibration/validation study using the Community Microwave Emission Model. J. Hydrometeorol. 2009. [Google Scholar] [CrossRef]
- Holmes, T.; Drusch, M.; Wigneron, J.P.; de Jeu, R. A global simulation of microwave emission: Error structures based on output from ECMWFs operational Integrated Forecast System. IEEE Trans. Geosci. Remote Sens. 2008, 46, 846–856. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; de Rosnay, P.; Albergel, C.; Isaksen, L. Sensitivity of soil moisture analyses to contrasting background and observation error scenarios. Water 2018, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- Carrera, M.; Bèlair, S.; Bilodeau, B. The Canadian Land Data Assimilation System (CaLDAS): Description and synthetic Evaluation Study. J. Hydrometeorol. 2015, 16, 1293–1314. [Google Scholar] [CrossRef]
- Lievens, H.; Al Bitar, A.; Verhoest, N.; Cabot, F.; De Lannoy, G.; Drusch, M.; Dumedah, G.; Hendricks Franssen, H.; Kerr, Y.; Tomer, S.; et al. Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin. J. Hydrometeorol. 2015, 16, 1109–1134. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.; Ulaby, F.; Hallikainen, M.; EL-Rayes, M. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Sci. 1985, 38, 1635–1643. [Google Scholar] [CrossRef]
- Mironov, V.; Dobson, M.; Kaupp, V.; Komarov, S.; Kleshchenko, V. Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Wang, J.R.; Schmugge, T. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.; Fomin, S. Temperature and mineralogy ependable model for microwave dielectric spectra of moist soils. PIERS Online 2009, 5, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Calvet, J.C.; Wigneron, J.P.; Chanzy, A.; Suresh Raju, C.P.; Laguerre, L. Microwave dielectric properties of a silt-Loam at high frequencies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 634–642. [Google Scholar] [CrossRef]
- Grody, N.; Weng, F. Microwave emission and scattering from deserts: Theory compared with satellite measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46, 361–375. [Google Scholar] [CrossRef]
- Lange, M.; de Rosnay, P. Evaluation of a microwave emissivity module for desert regions with CMEM. Earth Space Sci. 2019, 6, 1787–1795. [Google Scholar] [CrossRef]
- Choudhury, B.; Schmugge, T.; Mo, T. A parameterization of effective soil temperature for microwave emission. J. Geophys. Res. 1982, 87, 1301–1304. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.; de Rosnay, P.; de Jeu, R.; Wigneron, J.P.; Kerr, Y.H.; Calvet, J.C.; Escorihuela, M.J.; Saleh, K.; Lemaître, F. A new parameterization of the Effective Temperature for L-band Radiometry. Geophy. Res. Lett. 2006, 33, L07405. [Google Scholar] [CrossRef] [Green Version]
- Wigneron, J.P.; Laguerre, L.; Kerr, Y.H. A Simple Parmeterization of the L-band Microwave Emission from Rough Agricultural Soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. [Google Scholar] [CrossRef]
- Wegmüller, U.; Mätzler, C. Rough bare soil reflectivity model. IEEE Trans. Geosci. Electron. 1999, 37, 1391–1395. [Google Scholar] [CrossRef]
- Choudhury, B.; Schmugge, T.; Chang, A.; Newton, R. Effect of surface roughness on the microwave emission from soils. J. Geophys. Res. 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Kerr, Y.; Waldteufel, P.; Richaume, P.; Davenport, I.; Ferrazzoli, P.; Wigneron, J.P. Algorithm Theoretical Based Document (ATBD) for the SMOS Level 2 Soil Moisture Processor Development Continuation; SO-TN-ARR-L2PP-0037, issue 3.4; Array Systems Computing Inc.: Toronto, ON, Canada, 2010. [Google Scholar]
- Wigneron, J.P.; Kerr, Y.H.; Waldteufel, P.; Saleh, K.; Escorihuela, M.J.; Richaume, P.; Ferrazzoli, P.; de Rosnay, P.; Gurney, R.; Calvet, J.C.; et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 2007, 107, 639–655. [Google Scholar] [CrossRef]
- Wang, S.; Wigneron, J.P.; Jiang, L.M.; Parrens, M.; Yu, X.Y.; Al-Yaari, A.; Ye, Q.Y.; Fernandez-Moran, R.; Ji, W.; Kerr, Y. Global-Scale evaluation of roughness effects on C-band AMSR-E observations. Remote Sens. 2015, 7, 5734–5757. [Google Scholar] [CrossRef] [Green Version]
- Wegmüller, U.; Mätzler, C.; Njoku, E. Canopy Opacity Models, in Passive Microwave Remote Sensing of Land-Atmosphere Interactions; Choudhury, B.J., Pampaloni, P., Eds.; VSP: Utrecht, The Netherlands, 1995; p. 375. [Google Scholar]
- Jackson, T.; O’Neill, P. Attenuation of soil microwave emission by corn and soybeans at 1.4and 5 GHz. IEEE Trans. Geosci. Remote Sens. 1990, 28, 978–980. [Google Scholar] [CrossRef] [Green Version]
- Kirdyashev, K.; Chukhlantsev, A.; Shutko, A. Microwave radiation of the earths surface in the presence of vegetation cover. Radiotekhnika I Elektron. 1979, 24, 256–264. [Google Scholar]
- Mätzler, C. Microwave (1–100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote Sens. 1994, 32, 947–949. [Google Scholar] [CrossRef]
- Kou, X.; Chai, L.; Jiang, L.; Zhao, S.; Yan, S. Modeling of the permittivity of holly leaves in frozen environments. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6048–6057. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Pulliainen, J.; Rees, A.; Kontu, A.; Qiu, Y.; Derksen, C. Multiple-Layer adaptation of HUT snow emission model: Comparison with experimental data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2781–2794. [Google Scholar] [CrossRef]
- Anderson, E.A. A Point Energy and Mass Balance Model of a Snow Cover (NWS 19); National Oceanic and Atmospheric Administration (NOAA): Silver Spring, MD, USA, 1976.
- Pellarin, T.; Wigneron, J.P.; Calvet, J.C.; Berger, M.; Douville, H.; Ferrazzoli, P.; Kerr, Y.H.; Lopez-Baeza, E.; Pulliainen, J.; Simmonds, L.; et al. Two-year global simulation of L-band brightness temperature over land. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2135–2139. [Google Scholar] [CrossRef]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive, Vol I, Microwave Remote Sensing Fundamentals and Radiometry; Addison-Wesley Publishing: Boston, MA, USA, 1981. [Google Scholar]
- Wigneron, J.P.; Chanzy, A.; Calvet, J.C.; Bruguier, N. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields. Remote Sens. Environ. 1995, 51, 331–341. [Google Scholar] [CrossRef]
- Boone, A. Description du Schema de Neige ISBA-ES (Explicit Snow); CNRM: Meteo, France, 2002. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Newton, R.; Rouse, J. Microwave radiometer measurements of soil moisture content. IEEE Trans. Antennas Propag. 1980, 28, 680–686. [Google Scholar] [CrossRef]
- Shi, X.; Sturm, M.; Liston, G.E.; Jordan, R.E.; Lettenmaier, D.P. SnowSTAR2002 Transect Reconstruction Using a Multilayered Energy and Mass Balance Snow Model. J. Hydrometeorol. 2009, 10, 1151–1167. [Google Scholar] [CrossRef]
Band | Channel | Frequency (GHz) | Polarization | Notation |
---|---|---|---|---|
C | 1, 2 | 6.925 | V, H | 06V, 06H |
C | 3, 4 | 7.3 | V, H | 07V, 07H |
X | 5, 6 | 10.65 | V, H | 10V, 10H |
Ku | 7, 8 | 18.7 | V, H | 19V, 19H |
K | 9, 10 | 23.8 | V, H | 23V, 23H |
Ka | 11, 12 | 36.5 | V, H | 37V, 37H |
W | 13, 14 | 89.0 | V, H | 89V, 89H |
CMEM Modules | Choice of Parameterizations | |
---|---|---|
Short Name | Reference | |
Soil module: | ||
Dielectric mixing model | Dobson | [34] |
Mironov | [35] | |
Wang | [36] | |
Mironov 2009 | [37] | |
Calvet | [38] | |
Grody (desert only) | [39,40] | |
Effective temperature model | Choudhury | [41] |
Holmes | [42] | |
Surface temperature | ||
Wigneron | [43] | |
Soil roughness model | Wegmüller | [44] |
Choudhury | [45] | |
Texture dependent | [46] | |
Wigneron 2001 | [43] | |
Wigneron 2007 | [47] | |
Wang | [48] | |
Vegetation module: | ||
Vegetation optical depth model | Wegmüller | [49] |
Jackson | [50] | |
Kirdyashev | [51] | |
Wigneron | [47] | |
Vegetation temperature model | Dual (Low Veg.: Tsurf, High Veg.: Tair) | |
Surface temperature (Tsurf) | ||
Air temperature (Tair) | ||
Vegetation dielectric model | Mätzler | [52] |
Water | ||
Vegetation dielectric model (cold) | Not frozen | |
Ice | ||
Kou | [53] | |
Snow module: | ||
Snow emission model | HUT multi layer model | [54] |
HUT single layer model | [10] | |
Snow volumetric moisture model | Input (e.g., H-TESSEL) | |
Anderson | [13,55] | |
Constant | ||
Atmospheric module: | ||
Atmospheric emission model | Pellarin | [56] |
Ulaby | [57] | |
Input (e.g., RTTOV) |
Exp Name | H-TESSEL Snow Model | CMEM Specificity |
---|---|---|
ML5 | multi-layer snow () | Default (Table 2) |
SL1 | single-layer snow | ML5 but Snow volumetric moisture model is Anderson |
ML1 | multi-layer snow aggregated to single-layer | ML5 but Snow volumetric moisture model is Anderson |
TSO | multi-layer snow () | ML5 but Vegetation temperature model is Tsoil |
ICE | multi-layer snow () | ML5 but Vegetation dielectric model (cold) is Ice |
KOU | multi-layer snow () | ML5 but Vegetation dielectric model (cold) is Kou |
NOH | multi-layer snow () | ML5 but Fraction of high vegetation is setted to 0 |
Exp Name | Snow Surface Emissivity |
---|---|
IFS:ATLAS | TELSEM [17] |
IFS:CMEM | CMEM v6.1 |
CMEM Modules | Choice of Parameterizations |
---|---|
Soil Dielectric mixing model | Dobson (≤20 GHz), Calvet (>20 GHz) |
Soil Effective temperature model | Choudhury |
Soil roughness model | Wegmüller |
Vegetation optical depth model | Wegmüller |
Vegetation temperature model | Dual(Low Veg.: Tsurf, High Veg.: Tair) |
Vegetation dielectric model | Mätzler |
Vegetation dielectric model (cold) | Not frozen |
Snow emission model | HUT multi layer model () |
Snow volumetric moisture model | Anderson |
Atmospheric emission model | Input (RTTOV) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirahara, Y.; Rosnay, P.d.; Arduini, G. Evaluation of a Microwave Emissivity Module for Snow Covered Area with CMEM in the ECMWF Integrated Forecasting System. Remote Sens. 2020, 12, 2946. https://doi.org/10.3390/rs12182946
Hirahara Y, Rosnay Pd, Arduini G. Evaluation of a Microwave Emissivity Module for Snow Covered Area with CMEM in the ECMWF Integrated Forecasting System. Remote Sensing. 2020; 12(18):2946. https://doi.org/10.3390/rs12182946
Chicago/Turabian StyleHirahara, Yoichi, Patricia de Rosnay, and Gabriele Arduini. 2020. "Evaluation of a Microwave Emissivity Module for Snow Covered Area with CMEM in the ECMWF Integrated Forecasting System" Remote Sensing 12, no. 18: 2946. https://doi.org/10.3390/rs12182946
APA StyleHirahara, Y., Rosnay, P. d., & Arduini, G. (2020). Evaluation of a Microwave Emissivity Module for Snow Covered Area with CMEM in the ECMWF Integrated Forecasting System. Remote Sensing, 12(18), 2946. https://doi.org/10.3390/rs12182946