Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Field Observation Data
2.3. Remote Sensing Data
2.4. Meteorological and Radiation Data
3. Algorithms
3.1. Daily Net Radiation (Rn,daily)
3.2. Surface Soil Heat Flux (G0)
3.3. Sensible Heat Flux (H)
3.4. Land Surface Conditions
3.5. Daily Surface Resistance (rs,daily)
4. Results and Validation
4.1. Spatial and Temporal Variations of ET Across the Heihe River Basin
4.2. Validation with In Situ Ground Measurements
4.3. Comparison with Water Balance Estimates
5. Discussion
5.1. Validation of ET Estimates
5.2. Water Balance and Related Evaluations
5.3. Use of Multi-Source Satellite Data in the Algorithm Scheme
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ET | Evapotranspiration |
FY-2 | Fengyun geostationary meteorological satellite |
Rn | Net radiation (W/m2) |
G0 | Surface soil heat flux (W/m2) |
H | Sensible heat flux (W/m2) |
λLE | Latent heat flux (W/m2) |
G0,i | Instantaneous surface soil heat flux |
Rn,i | Instantaneous net radiation |
Rn,daily | Daily net radiation (MJ/m2/d) |
Rnl,daily | Daily net longwave radiation (MJ/m2/d) |
Ra | Extra-terrestrial solar irradiance (MJ/m2/d) |
Tmax | Daily maximum air temperatures (K) |
Tmin | Daily minimum air temperatures (K) |
Rso | Clear-sky solar radiation (MJ/m2/d) |
n | Sunshine hours |
Fi | Index for cloud-type factors for FY-2D/E data |
tr | Time of sunrise |
ts | Time of sunset |
tg | Hourly intervals (increments of 1) |
i | Time series between sunrise and sunset |
α | Surface albedo |
σ | Stefan–Boltzmann constant |
LAI | Leaf area index |
RVI | Ratio vegetation index |
Ts | Surface temperature |
Ta | Air temperature (°C) |
soz | Solar zenith angle |
s | Integration variable |
Г | Near-surface real soil thermal inertia (J/m2/k1/s0.5) |
β | Extinction coefficient of vegetation for solar radiation energy |
τ | Elevation angle of the sun |
KB−1 | Total aerodynamic resistance to heat transfer |
rcmin | Minimum values for canopy resistances |
ea | Canopy vapor pressure (kPa) |
e* | Saturated vapor pressure (kPa) |
es | Surface vapor pressure (kPa) |
F1 | Environmental constraint factor functions (photosynthetically active radiation) |
F2 | Environmental constraint factor functions (soil moisture) |
F3 | Environmental constraint factor functions (vapor pressure deficit) |
F4 | Environmental constraint factor functions (air temperature) |
PBL | Boundary layer mixing height |
VPD | Vapor pressure deficit (kPa) |
W | Total precipitable water content of the entire atmospheric column (centimeters) |
a | Surface absolute humidity (g m−3) |
rs,daily | Daily surface resistance |
SMdaily | Daily soil moisture content |
Udaily | Daily wind speed |
Uclear | Wind speed data on a clear day |
Eice | Sublimation of snow and ice |
ETwater surface | Water evaporation |
LEbare | Latent heat flux of bare soil |
γ | Psychrometric constant |
Δ | Slope of the curve |
References
- Wang, K.P.; Wang, Z.Q.; Li, M.C.; Sparrow, M. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos. 2007, 112, D15. [Google Scholar] [CrossRef]
- Xiong, J.; Wu, B.F.; Yan, N.N.; Hu, M.G. Algorithm of regional surface evaporation using remote sensing: A case study of Haihe basin, China. In MIPPR: Remote Sensing and GIS Data Processing and Applications; SPIE: Bellingham, WA, USA, 2017; Volume 679025. [Google Scholar]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and energy budgets from ground measurements, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Wu, B.F.; Yan, N.N.; Xiong, J.; Bastiaanssen, W.G.M.; Zhu, W.W.; Stein, A. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. J. Hydrol. 2012, 436, 67–80. [Google Scholar] [CrossRef]
- Pereira, A.R. The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric. For. Meteorol. 2004, 125, 305–313. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Kathryn, A.S.; Martha, C.A.; William, P.K.; Feng, G.; Joseph, G.A.; Lynn, M.; John, H.P.; Christopher, R.H.; Carmelo, C.; Yun, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Colliander, A.; Halverson, G.; Tu, K.; Famiglietti, J.S. SMAP soil moisture improves global evapotranspiration. Remote Sens. Environ. 2018, 219, 1–14. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L.B. Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models. Agric. For. Meteorol. 1999, 96, 219–238. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L.B. Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data. Remote Sens. Environ. 2002, 79, 199–212. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. Comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L.P.H.; Uhlenbrook, S. Comparison of different evaporation estimates over the African continent. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 8421–8465. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.Z.; Liu, S.M.; Xu, Z.W.; Chen, Y.J.; Zhu, M.J. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J. Geophys. Res. Atmos. 2012, 117, D13. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Wang, W.; Zhou, Z.H. Evaluation of MODIS MOD16 Evaportranspiration Product in Chinese River Basins J. Nat. Resour. 2017, 32, 517–528. [Google Scholar]
- McCabe, M.F.; Wood, E.F. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens. Environ. 2006, 105, 271–285. [Google Scholar] [CrossRef]
- Nishida, K.; Nemani, R.R.; Glassy, J.M.; Running, S.W. Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens. 2003, 41, 493–501. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.; Baldocchi, D.D. Global estimates of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Jia, L.; Wang, J. Estimation of Area Roughness Length for Momentum Using Remote Sensing Data and Measurements in Field. Chin. J. Atmos. Sci. 1999, 23, 61–69. [Google Scholar]
- Zhu, C.Y. The retrieval of aerodynamic surface roughness from SAR remote sensing image. In Proceedings of the First International Symposium on Recent Advances in Quantitative Remote Sensing, Torrent (Valencia) Spain, 16–20 September 2002. [Google Scholar]
- Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef] [Green Version]
- Hryama, T.; Sugita, M.; Kotoda, K. Regional roughness parameters and momentum fluxes over a complex area. J. Appl. Meteorol. 1996, 35, 2179–2190. [Google Scholar] [CrossRef]
- Borak, J.S.; Jasinski, M.F.; Crago, R.D. Time series vegetation aerodynamic roughness fields estimated from MODIS observations. Agric. For. Meteorol. 2005, 135, 252–268. [Google Scholar] [CrossRef]
- Maurer, K.D.; Hardiman, B.S.; Vogel, C.S.; Bohrer, G. Canopy-structure effects on surface roughness parameters: Observations in a Great Lakes mixed-deciduous forest. Agric. For. Meteorol. 2013, 177, 24–34. [Google Scholar] [CrossRef]
- Zhu, W.W.; Wu, B.F.; Lu, S.L.; Yan, N.N.; Liu, G.S; Liu, S.F.; Xing, Q. An improved empirical estimation method of surface soil heat flux for large spatial scale. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 22–26 April 2013. [Google Scholar]
- Zhu, W.W.; Wu, B.F.; Yan, N.N.; Feng, X.L.; Xing, Q. A method to estimate diurnal surface-soil heat flux from MODIS data for a sparse vegetation and bare soil. J. Hydrol. 2014, 511, 139–150. [Google Scholar] [CrossRef]
- Zhu, W.W. Research on Land Surface Soil Heat Flux Remote Sensing Estimation. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Long, D.; Vijay, P.S. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Zhang, Y.; Chen, J.; Jia, K.; Zhang, X.; Fisher, J.B.; Wang, X.; Zhang, L.; et al. Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method. J. Hydrol. 2017, 553, 508–526. [Google Scholar] [CrossRef]
- Price, J.C. Estimation of Regional Scale Evapotranspiration Through Analysis of Satellite Thermal-infrared Data. IEEE Trans. Geosci. Remote Sens. 1982, 20, 286–292. [Google Scholar] [CrossRef]
- Pedro, G.; Joaquin, B.; Allen, R.G. Measuring versus estimating net radiation and soil heat flux: Impact on Penman-Monteith reference ET estimates in semiarid regions. Agric. For. Meteorol. 2007, 89, 275–286. [Google Scholar]
- Tanguy, M.; Baille, A.; Gonzalez-Real, M.M.; Lloyd, C.; Cappelaere, B.; Kergoat, L.; Cohard, J.M. A new parameterization scheme of ground heat flux for land surface flux retrieval from remote sensing information. J. Hydrol. 2012, 454, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.M.; Wu, B.F.; Yan, N.N.; Zhu, W.W.; Feng, X.L. An improved satellite-based approach for estimating vapor pressure deficit from MODIS data. J. Geophys. Res. Atmos. 2014, 119, 12256–12271. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A review on global terrestrial evapotranspiration: Observation, modeling, climatology, and Climatic Variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Panagiotis, G. A Methodology for Calculating Cooling from Vegetation Evapotranspiration for Use in Urban Space Microclimate Simulations. Procedia Environ. Sci. 2017, 38, 477–484. [Google Scholar]
- Murray, F.W. On the computation of saturation vapor pressure. J. Appl. Meteorol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Dang, Q.L.; Margolis, H.A.; Coyea, M.R.; Sy, M.; Collatz, G.J. Regulation of branch-level gas exchange of boreal trees: Roles of shoot water potential and vapour pressure difference. Tree Physiol. 1997, 17, 521–535. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal trend of photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 2003, 23, 865–877. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- New, M.; Hulme, M.; Jones, P. Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 1999, 12, 829–856. [Google Scholar] [CrossRef]
- Almeida, A.C.; Landsberg, J.J. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil. Agric. Meteorol. 2003, 118, 237–250. [Google Scholar] [CrossRef]
- Jolly, W.M.; Graham, J.M.; Michaelis, A.; Nemani, R.R.; Running, S.W. A flexible, integrated system for generating meteorological surfaces derived from point sources across multiple geographic scales. Environ. Model. Softw. 2005, 20, 873–882. [Google Scholar] [CrossRef]
- Liu, G.S.; Hafeez, M.; Liu, Y.; Xu, D.; Vote, C. Comparison of two methods to derive time series of actual evapotranspiration using eddy covariance measurements in the southeastern Australia. J. Hydrol. 2012, 454, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.B.; Tetsuya, H.; Tetsuzo, Y.; Hiroki, T. A nonparametric approach to estimating terrestrial evaporation: Validation in eddy covariance sites. Agric. Meteorol. 2012, 157, 49–59. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Hargreaves, G.H.; Riley, P. Irrigation water requirement for the Senegal River Basin. J. Irrig. Drain. Eng. 1985, 111, 265–275. [Google Scholar] [CrossRef]
- Supit, I.; van Kappel, R.R. A simple method to estimate global radiation. Sol. Energy 1998, 63, 147–160. [Google Scholar] [CrossRef]
- Almorox, J.; Hontoria, C. Global solar radiation estimation using sunshine duration in Spain. Energy Convers. Manag. 2004, 45, 1529–1535. [Google Scholar] [CrossRef]
- Zhao, N.; Zeng, X.F.; Han, S.M. Solar radiation estimation using sunshine hour and air pollution index in China. Energy Convers. Manag. 2013, 76, 846–851. [Google Scholar] [CrossRef]
- Allen, R.G. Self-calibrating method for estimating solar radiation from air temperature. J. Hydrol. Eng. 1997, 2, 56–67. [Google Scholar] [CrossRef]
- Castellvi, F. A new simple method for estimating monthly and daily solar radiation. Performance and comparison with other methods at Lleida (NE Spain); a semiarid climate. Appl. Clim. 2001, 69, 231–238. [Google Scholar]
- Liu, S.F. Research on Land Surface Net Radiation Remote Sensing Estimation. Ph.D. Thesis, Institute of Remote Sensing & Digital: Earth, University of Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Wu, B.F.; Liu, S.F.; Zhu, W.W.; Yan, N.N.; Xing, Q. An Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin. Sensors 2017, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.F.; Liu, S.F.; Zhu, W.W.; Yu, M.Z.; Yan, N.N.; Xing, Q. A method to estimate sunshine duration using cloud classification data from a geostationary meteorological satellite (FY-2D) over the Heihe River Basin. Sensors 2016, 16, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.F.; Zhu, W.W.; Yan, N.N.; Feng, X.L.; Xing, Q.; Zhuang, Q.F. An improved method for deriving daily evapotranspiration estimates from satellite estimates on cloud-free days. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1323–1330. [Google Scholar] [CrossRef]
- Montes, C.; Lhomme, J.P.; Demarty, J.; Prevot, L.; Jacob, F. A three-source SVAT modeling of evaporation: Application to the seasonal dynamics of a grassed vineyard. Agric. For. Meteorol. 2014, 191, 64–80. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation. J. Hydrol. 2015, 528, 206–216. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to water resources. J. Hydrol. 2015, 527, 251–261. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales. J. Geophys. Res. Atmos. 2010, 115, D21128. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.L.; Wan, Z.M.; Bi, Y.Y.; Zhou, C.H.; Tang, B.H.; Yan, G.J.; Zhang, X.Y. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.F.; Xing, Q.; Yan, N.N.; Zhu, W.W.; Zhuang, Q.F. A linear relationship between temporal multiband MODIS BRDF and aerodynamic roughness in HiWATER wind gradient data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 507–511. [Google Scholar]
- Yu, M.Z.; Wu, B.F.; Yan, N.N.; Xing, Q.; Zhu, W.W. A method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data. Remote Sens. 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Steffen, K.; Elizabeth, G.; Andre, O.; Bodo, A.; Helga, N. Satellite-Based sunshine Duration for Europe. Remote Sens. 2013, 5, 2943–2972. [Google Scholar]
- Tan, Z.H.; Ma, S.; Zhao, X.B.; Yan, W.; Lu, W. Evaluation of cloud top height retrievals from China’s next-generation geostationary meteorological satellite FY-4A. J. Meteor. Res. 2019, 33, 553–562. [Google Scholar] [CrossRef]
- Carlson, T. An Overview of the Triangle Method for Estimating Surface Evapotranspiration and Soil moisture from Satellite Imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.B.; Lü, A.F.; Jia, S.F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y. Advances in HEIFE research (1987–1994); Special Issue I; China Meteorological Press: Beijing, China, 1994; p. 191. [Google Scholar]
- Feng, X.L.; Wu, B.F.; Yan, N.N. A method for deriving the boundary layer mixing height from MODIS atmospheric profile data. Atmosphere 2015, 6, 1346–1361. [Google Scholar] [CrossRef] [Green Version]
- Ma, A. Remote Sensing Information Model; Peking University Press: Beijing, China, 1997. [Google Scholar]
- Ma, Y.M.; Dai, Y.X.; Ma, W.Q.; Li, M.S.; Wang, J.M.; Wen, J.; Sun, F.L. Satellite remote sensing parameterization of regional land surface heat fluxes over heterogeneous surface of arid and semi-arid areas. Plateau Meteorol. 2004, 23, 139–146. [Google Scholar]
- Li, X.; Li, X.W.; Li, Z.Y.; Ma, M.G.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.X.; Yan, G.J.; et al. Watershed Allied Telemetry Experimental Research. J. Geophys. Res. 2009, 114, D22103. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Berbigier, P.; Bonnefond, J.M.; Mellmann, P. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric. For. Meteorol. 2001, 108, 183–197. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. Comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2010, 15, 1291–1306. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.M.; Xu, Z.W.; Song, L.S.; Zhao, Q.Y.; Ge, Y.; Xu, T.R.; Ma, Y.F.; Zhu, L.Z.; Jia, Z.Z.; Zhang, F. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. Meteorol. 2016, 230, 97–113. [Google Scholar] [CrossRef]
- Steve, A.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeeler, C.C.; Gumley, L.E.; Baum, B.A.; Schaaf, C.; Riggs, G. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (Mod35), EOS ATBD. 1997. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod06.pdf (accessed on 1 December 2019).
- Gruhier, C.; De Rosnay, P.; Kerr, Y.; Mougin, E.; Ceschia, E.; Calvet, J.C.; Richaume, P. Evaluation of AMSR-E soil moisture product based on ground measurements over temperate and semi-arid regions. Geophys. Res. Lett. 2018, 35, L10405. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jia, L.; Menenti, M. Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 935–942. [Google Scholar] [CrossRef]
- Qian, Q.J.; Wu, B.F.; Xiong, J. Interpolation System for Generating Meteorological Surfaces Using to Compute Evapotranspiration in Haihe River Basin. (IGARSS). In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005. [Google Scholar]
- Yu, J.J.; Shen, Y.; Pan, Y.; Xiong, A.Y. Comparative assessment between the daily merged precipitation dataset over China and the World’s popular counterparts. Acta Meteorol. Sin. 2015, 73, 394–410. [Google Scholar]
- Yu, J.J.; Shen, Y.; Pan, Y.; Zhao, P.; Zhou, Z.J. Improvement of satellite-based prcipitation estimates over China based on probability density function matchingn metod. J. Appl. Meteor. Sci. 2013, 24, 544–553. [Google Scholar]
- Shen, Y.; Pan, Y.; Yu, J.J.; Zhao, P.; Zhou, Z.J. Quality assessment of hourly merged precipitation on product over China. Trans. Arans. Atmos. Sci. 2013, 36, 37–46. [Google Scholar]
- Zhuang, Q.F.; Wu, B.F.; Yan, N.N.; Zhu, W.W.; Xing, Q. A method for sensible heat flux model parameterization based on radiometric surface temperature and environmental factors without involving the parameter KB−1. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 50–59. [Google Scholar] [CrossRef]
- Kuzmin, P.P. One method for investigations of evaporation from the snow cover, In Russian. Trans. State Hydrol. Inst. 1953, 41, 34–52. [Google Scholar]
- Shuttleworth, W.J.; Evaporation Maidment, D.R. (Eds.) Handbook of Hydrology; McGraw-Hill: Sydney, Australia, 1993. [Google Scholar]
- Wu, B.F.; Xiong, J.; Yan, N.N.; Yang, L.D.; Du, X. ETWatch for monitoring regional evapotranspiration with remote sensing. Adv. Water Sci. 2008, 19, 671–678. [Google Scholar]
- Cleugh, H.A.; Leuninga, R.; Mu, Q.Z.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Irmak, S.; Mutiibwa, D. On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables. Water Resour. Res. 2010, 46, W08526. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Farias, S.; Olioso, A.; Antonioletti, R.; Brisson, N. Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration. Irrig. Sci. 2004, 23, 1–9. [Google Scholar] [CrossRef]
- Teixeira, D.C.A.H.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle Sao Francisco river basin, Brazil, part a: Calibration and validation. Agirc. For. Meteorol. 2008, 149, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Wu, B.; Zhu, W.; Zhang, N. A trade-off method between environment restoration and human water consumption: A case study in Ebinur Lake. J. Clean. Prod. 2019, 217, 732–741. [Google Scholar] [CrossRef]
- Tan, S.; Wu, B.; Yan, N.; Zeng, H. Satellite-Based Water Consumption Dynamics Monitoring in an Extremely Arid Area. Remote Sens. 2018, 10, 1399. [Google Scholar] [CrossRef] [Green Version]
- Mads, O.R.; Mikael, K.S.; Wu, B.F.; Yan, N.N.; Qin, H.H.; Sandholt, I. Regional-scale estimation of evapotranspiration for the North China Plain using MODIS data and the triangle-approach. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 143–153. [Google Scholar]
- Qin, H.H.; Cao, G.L.; Kristensen, M.; Zheng, C.M. Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrol. Earth Syst. Sci. 2013, 17, 3759–3778. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Special issue: Remote sensing of natural resources and the environment. Sensors 2007, 1, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Budde, M.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agric. Water Manag. 2011, 98, 606–618. [Google Scholar] [CrossRef]
- Gao, B.; Qin, Y.; Wang, Y.H.; Yang, D.W.; Zheng, Y.R. Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China. Forests 2016, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Lei, H.M.; Yang, D.W.; Cao, B.; Wang, Y.H.; Cong, Z.T.; Fan, W.J. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. J. Hydrol. 2016, 542, 204–221. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, Yi.; Zheng, C.M.; Xiao, H.L.; Fan, W.J.; Zou, S.B.; Wu, B.; Yao, Y.Y.; Zhang, A.J.; Liu, J. Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling. Water Resour. Res. 2015, 51, 4065–4085. [Google Scholar] [CrossRef]
- Deng, X.Z.; Zhao, C.H. Identification of Water Scarcity and Providing Solutions for Adapting to Climate Changes in the Heihe River Basin of China. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Ge, Y.C.; Li, H.Y.; Han, F.; Hu, X.L.; Tian, W.; Tian, Y.; Pan, X.D.; Nian, Y.Y.; et al. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins. J. Geophys. Res. Atmos. 2018, 123, 890–914. [Google Scholar] [CrossRef]
- Kharrazi, A.; Akiyama, T.H.; Yu, Y.D.; Li, J. Evaluating the Evolution of the Heihe River Basin Using the Ecological Network Analysis: Efficiency, resilience, and implications for water resource management policy. Sci. Total Environ. 2016, 572, 688–696. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Christopher Small. Spectral Mixture Analysis as a Unified Framework for the Remote Sensing of Evapotranspiration. Remote Sens. 2018, 10, 1961. [Google Scholar] [CrossRef] [Green Version]
- Dilts, T.E.; Weisberg, P.J.; Dencker, C.M.; Chambers, J.C. Functionally relevant climate variables for arid lands: A climatic water deficit approach for modelling desert shrub distributions. J. Biogeogr. 2015, 42, 1986–1997. [Google Scholar] [CrossRef]
Station | Long | Lat | H | Ecosystem | Location |
---|---|---|---|---|---|
Arou | 100.46 | 38.04 | 3033 | Alpine meadow | Upstream |
Yingke | 100.41 | 38.86 | 1519 | Agriculture, Maize | Midstream |
Daman | 100.37 | 38.85 | 1556 | Agriculture, Maize | Midstream |
Wetland | 100.45 | 38.98 | 1460 | Wetland | Midstream |
Huazhaizi | 100.32 | 38.77 | 1731 | Desert | Midstream |
Shenshawo | 100.49 | 38.79 | 1594 | Desert | Midstream |
Sidaoqiao | 101.14 | 42.00 | 873.00 | Sparse tamarix | Downstream |
Year | Rainfall | ET by Landcover Type | Average ET | Bias | |||||
---|---|---|---|---|---|---|---|---|---|
Forest | Grassland | Wetland | Cultivated Land | Artificial Surface | Desert | ||||
2000 | 106.3 | 402.9 | 313.7 | 371.4 | 436.6 | 347.3 | 89.3 | 132.9 | −20% |
2001 | 101.7 | 349.5 | 263.6 | 323.7 | 348.6 | 291.1 | 78.3 | 114.1 | −11% |
2002 | 132.2 | 360.3 | 282.2 | 348.1 | 445.3 | 349.4 | 97.0 | 136.0 | −3% |
2003 | 143.1 | 401.2 | 342.8 | 411.0 | 465.9 | 361.1 | 88.3 | 135.8 | 5% |
2004 | 110.3 | 356.2 | 292.6 | 384.1 | 429.9 | 333.0 | 92.8 | 132.6 | −17% |
2005 | 136.4 | 306.7 | 249.4 | 346.3 | 393.9 | 304.5 | 94.8 | 128.4 | 6% |
2006 | 118.4 | 322.6 | 265.4 | 370.2 | 415.8 | 312.7 | 84.9 | 122.9 | −4% |
2007 | 163.7 | 355.0 | 302.3 | 343.3 | 419.3 | 323.6 | 85.5 | 127.0 | 29% |
2008 | 145.1 | 313.2 | 291.5 | 395.0 | 474.4 | 357.1 | 95.4 | 136.1 | 7% |
2009 | 127.7 | 315.1 | 278.0 | 378.8 | 401.4 | 313.0 | 91.9 | 129.0 | −1% |
2010 | 166.0 | 351.3 | 296.8 | 426.1 | 389.7 | 293.6 | 103.1 | 140.4 | 18% |
2011 | 130.2 | 397.3 | 326.1 | 398.2 | 384.4 | 298.0 | 94.7 | 136.4 | −5% |
2012 | 145.5 | 385.5 | 305.4 | 399.6 | 435.0 | 328.7 | 99.1 | 140.5 | 4% |
2013 | 140.6 | 356.7 | 296.2 | 399.0 | 465.0 | 346.3 | 102.9 | 143.4 | −2% |
2014 | 141.6 | 353.1 | 298.7 | 404.4 | 425.3 | 319.0 | 97.9 | 137.9 | 3% |
Average | 133.9 | 355.1 | 293.6 | 379.9 | 422.0 | 325.2 | 93.1 | 132.9 | 1% |
Site | Time | R | MAE (mm/day) | RMSE (mm/day) | NSE |
---|---|---|---|---|---|
Arou | 2008.06–2014.12 | 0.890 | 0.489 | 0.670 | 0.786 |
Yingke | 2008.01–2010.12 | 0.915 | 0.540 | 0.736 | 0.832 |
Daman | 2012.06–2014.12 | 0.919 | 0.582 | 0.768 | 0.827 |
Sidaoqiao | 2013.07–2013.12 | 0.843 | 0.468 | 0.468 | 0.700 |
Huazhaizi | 2012.08–2014.12 | 0.880 | 0.278 | 0.278 | 0.761 |
Shenshawo | 2012.08–2014.12 | 0.842 | 0.229 | 0.375 | 0.705 |
Site | R2 | MRE (%) | RMSE (mm/Month) | MAPE (%) |
---|---|---|---|---|
Arou | 0.96 | −8.85 | 1.09 | 13.00 |
Yingke | 0.99 | −9.88 | 1.83 | 10.29 |
Daman | 0.95 | −9.88 | 2.13 | 13.52 |
Sidaoqiao | 0.81 | −3.96 | 5.47 | 28.31 |
Huazhaizi | 0.78 | −16.97 | 1.02 | 22.86 |
Shenshawo | 0.85 | 15.97 | 1.19 | 31.04 |
Name | Area (km2) | Rainfall (mm/year) | Runoff (mm/year) | Water Balance ET (mm/year) | Proposed Algorithms (mm/year) | Deviation (%) |
---|---|---|---|---|---|---|
Palugou | 2.89 | 458.59 | 62.83 | 395.76 | 437 | 9.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Zhu, W.; Yan, N.; Xing, Q.; Xu, J.; Ma, Z.; Wang, L. Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data. Remote Sens. 2020, 12, 332. https://doi.org/10.3390/rs12020332
Wu B, Zhu W, Yan N, Xing Q, Xu J, Ma Z, Wang L. Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data. Remote Sensing. 2020; 12(2):332. https://doi.org/10.3390/rs12020332
Chicago/Turabian StyleWu, Bingfang, Weiwei Zhu, Nana Yan, Qiang Xing, Jiaming Xu, Zonghan Ma, and Linjiang Wang. 2020. "Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data" Remote Sensing 12, no. 2: 332. https://doi.org/10.3390/rs12020332
APA StyleWu, B., Zhu, W., Yan, N., Xing, Q., Xu, J., Ma, Z., & Wang, L. (2020). Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data. Remote Sensing, 12(2), 332. https://doi.org/10.3390/rs12020332