SnowCloudMetrics: Snow Information for Everyone
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Snow Cover Frequency
2.2. Snow Disappearance Date
2.3. Cloud Correction in GEE Algorithm
2.4. An Example Application of SCF and SDD in the Amu Darya Basin
2.5. Assessment using Snow Telemetry Network in the Western U.S.
3. Results
3.1. Global Mapping of SCF and SDD
3.2. Results from the SNOTEL Assessment
3.3. Results for the Amu Darya Basin Example
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Code and Data Availability
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Gehrmann, F.; Hänninen, H.; Liu, C.; Saarinen, T. Phenological responses to small-scale spatial variation in snowmelt timing reveal compensatory and conservative strategies in subarctic-alpine plants. Plant Ecol. Divers. 2017, 10, 453–468. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.E.; Kruuk, L.E.; Charmantier, A.; Murie, J.O.; Dobson, F.S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 2012, 489, 554. [Google Scholar] [CrossRef] [PubMed]
- Björk, R.G.; Molau, U. Ecology of alpine snowbeds and the impact of global change. Arctic Antarct. Alp. Res. 2007, 39, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, E.; Molotch, N.P.; Goulden, M.L.; Kelly, A.E.; Bales, R.C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 2012, 5, 705. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Allchin, M.I.; Déry, S.J. A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration, 1971–2014. Ann Glaciol. 2017, 58, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Zhong, E.; Li, Q.; Sun, S.; Chen, W.; Chen, S.; Nath, D. Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: Evaluation of impacts of aerosol on seasonal snow cover. Adv. Atmos. Sci. 2017, 34, 1333–1345. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B.; et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353. [Google Scholar] [CrossRef]
- Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–49. [Google Scholar] [CrossRef]
- Mote, P.W.; Li, S.; Lettenmaier, D.P.; Xiao, M.; Engel, R. Dramatic declines in snowpack in the western US. Clim. Atmos. Sci. 2018, 1, 2. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraër, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Hagenstad, M.; Burakowski, E.; Hill, R. The Economic Contributions of Winter Sports in a Changing Climate. Available online: https://protectourwinters.org/wp-content/uploads/2019/12/POW-2018-economic-report.pdf (accessed on 20 August 2020).
- Global Cryosphere Watch. Available online: https://globalcryospherewatch.org/reference/snow_inventory.php (accessed on 20 August 2020).
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Chang. 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Gerlak, A.K.; Lautze, J.; Giordano, M. Water resources data and information exchange in transboundary water treaties. Int. Environ. Agreem. Polit. Law Econ. 2011, 11, 179–199. [Google Scholar] [CrossRef]
- Milman, A.; Bunclark, L.; Conway, D.; Adger, W.N. Assessment of institutional capacity to adapt to climate change in transboundary river basins. Clim. Chang. 2013, 121, 755–770. [Google Scholar] [CrossRef]
- Plengsaeng, B.; Wehn, U.; van der Zaag, P. Data-sharing bottlenecks in transboundary integrated water resources management: A case study of the Mekong River Commission’s procedures for data sharing in the Thai context. Water Int. 2014, 39, 933–951. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, L.; Petersen-Perlman, J.D.; Sproles, E.A.; Eynard, J.; Wolf, A.T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Chang. 2017, 45, 35–46. [Google Scholar] [CrossRef]
- Serreze, M.C.; Clark, M.P.; Armstrong, R.L.; McGinnis, D.A.; Pulwarty, R.S. Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res. 1999, 35, 2145–2160. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev. Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Rice, R.; Bales, R.C. Embedded-sensor network design for snow cover measurements around snow pillow and snow course sites in the Sierra Nevada of California. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Silverman, N.L.; Maneta, M.P. Detectability of change in winter precipitation within mountain landscapes: Spatial patterns and uncertainty. Water Resour. Res. 2016, 52, 4301–4320. [Google Scholar] [CrossRef]
- Cayan, D.R. Interannual climate variability and snowpack in the western United States. J. Clim. 1996, 9, 928–948. [Google Scholar] [CrossRef] [Green Version]
- Pederson, G.T.; Gray, S.T.; Woodhouse, C.A.; Betancourt, J.L.; Fagre, D.B.; Littell, J.S.; Watson, E.; Luckman, B.H.; Graumlich, L.J. The unusual nature of recent snowpack declines in the North American Cordillera. Science 2011, 333, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W.; Daly, C. Mapping “at risk” snow in the Pacific Northwest. J. Hydrometeorol. 2006, 7, 1164–1171. [Google Scholar] [CrossRef]
- Sproles, E.A.; Kerr, T.; Nelson, C.O.; Aspe, D.L. Developing a snowmelt forecast model in the absence of field data. Water Resour. Manag. 2016, 30, 2581–2590. [Google Scholar] [CrossRef]
- Dozier, J. Mountain hydrology, snow color, and the fourth paradigm. Eos Trans. Am. Geophys. Union 2011, 92, 373. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Barry, R.G.; Bulygina, O.N.; Essery, R.L.; Frolov, D.M.; et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. AMBIO J. Hum. Environ. 2011, 40, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Liston, G.E.; Hiemstra, C.A. The changing cryosphere: Pan-Arctic snow trends (1979–2009). J. Clim. 2011, 24, 5691–5712. [Google Scholar] [CrossRef]
- Olsen, M.S.; Callaghan, T.V.; Reist, J.D.; Reiersen, L.O.; Dahl-Jensen, D.; Granskog, M.A.; Goodison, B.; Hovelsrud, G.K.; Johansson, M.; Kallenborn, R.; et al. The changing Arctic cryosphere and likely consequences: An overview. AMBIO J. Hum. Environ. 2011, 40, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Berteaux, D.; Gauthier, G.; Domine, F.; Ims, R.A.; Lamoureux, S.F.; Lévesque, E.; Yoccoz, N. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 2016, 3, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Tolon, V.; Morellet, N.; Santin-Janin, H.; Licoppe, A.; Fischer, C.; Bombois, J.; Patthey, P.; Pesenti, E.; Chenesseau, D.; et al. Common drivers of seasonal movements on the migration–residency behavior continuum in a large herbivore. Sci. Rep. 2018, 8, 7631. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.J.; Börger, L.; Dettki, H.; Bunnefeld, N.; Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 2012, 22, 2007–2020. [Google Scholar] [CrossRef]
- Pettorelli, N.; Weladji, R.B.; Holand, Ø.; Mysterud, A.; Breie, H.; Stenseth, N.C. The relative role of winter and spring conditions: Linking climate and landscape-scale plant phenology to alpine reindeer body mass. Biol. Lett. 2005, 1, 24–26. [Google Scholar] [CrossRef] [Green Version]
- van de Kerk, M.; Verbyla, D.; Nolin, A.W.; Sivy, K.J.; Prugh, L.R. Range-wide variation in the effect of spring snow phenology on Dall sheep population dynamics. Environ. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Sproles, E.A.; Crumley, R.L.; Nolin, A.W.; Mar, E.; Lopez Moreno, J.I. SnowCloudHydro—A New Framework for Forecasting Streamflow in Snowy, Data-Scarce Regions. Remote Sens. 2018, 10, 1276. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. Available online: http://nsidc.org/data/MOD10A1/versions/6 (accessed on 20 August 2020).
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. Int. J. 2007, 21, 1534–1547. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Hammond, J.C.; Saavedra, F.A.; Kampf, S.K. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol. 2018, 38, 4369–4383. [Google Scholar] [CrossRef]
- Saavedra, F.A.; Kampf, S.K.; Fassnacht, S.R.; Sibold, J.S. A snow climatology of the Andes Mountains from MODIS snow cover data. Int. J. Climatol. 2017, 37, 1526–1539. [Google Scholar] [CrossRef]
- NASA National Snow and Ice Data Center. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 5. Available online: https://doi.org/10.5067/63NQASRDPDB0 (accessed on 20 August 2020).
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Arsenault, K.R.; Houser, P.R.; De Lannoy, G.J. Evaluation of the MODIS snow cover fraction product. Hydrol. Process. 2014, 28, 980–998. [Google Scholar] [CrossRef] [Green Version]
- Rakhmatullaev, S.; Huneau, F.; Kazbekov, J.; Le Coustumer, P.; Jumanov, J.; El Oifi, B.; Motelica-Heino, M.; Hrkal, Z. Groundwater resources use and management in the Amu Darya river basin (Central Asia). Environ. Earth Sci. 2010, 59, 1183. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Verdin, K.; Jarvis, A. Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS)-Technical Documentation; World Wildlife Fund US: Washington, DC, USA, 2006. Available online: http://hydrosheds.cr.usgs.gov (accessed on 20 August 2020).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Yan, H.; Wigmosta, M.; Skaggs, R.; Leung, R.; Hou, Z. Regional snow parameters estimation for large-domain hydrological applications in the western United States. J. Geophys. Res. Atmos. 2019. [Google Scholar] [CrossRef]
- Yan, H.; Sun, N.; Wigmosta, M.; Skaggs, R.; Hou, Z.; Leung, R. Next-generation intensity-duration-frequency curves for hydrologic design in snow-dominated environments. Water Resour. Res. 2018, 54, 1093–1108. [Google Scholar] [CrossRef]
- Johnson, J.B.; Schaefer, G.L. The influence of thermal, hydrologic, and snow deformation mechanisms on snow water equivalent pressure sensor accuracy. Hydrol. Process. 2002, 16, 3529–3542. [Google Scholar]
- Climate Action Plan. Available online: http://www.cityofwhitefish.org/229/Climate-Action-Plan (accessed on 20 August 2020).
- Raleigh, M.S.; Rittger, K.; Moore, C.E.; Henn, B.; Lutz, J.A.; Lundquist, J.D. Ground-based testing of MODIS fractional snow cover in subalpine meadows and forests of the Sierra Nevada. Remote Sens. Environ. 2013, 128, 44–57. [Google Scholar] [CrossRef]
- Roth, T.R.; Nolin, A.W. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment. Hydrol. Earth Syst. Sci. 2017, 21, 5427–5442. [Google Scholar] [CrossRef] [Green Version]
- Varhola, A.; Coops, N.C.; Weiler, M.; Moore, R.D. Forest canopy effects on snow accumulation and ablation: An integrative review of empirical results. J. Hydrol. 2010, 392, 219–233. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G. Scaling issues in snow hydrology. Hydrol. Process. 1999, 13, 2149–2175. [Google Scholar] [CrossRef]
- Sturm, M.; Holmgren, J.; Liston, G.E. A seasonal snow cover classification system for local to global applications. J. Clim. 1995, 8, 1261–1283. [Google Scholar] [CrossRef]
Standard Deviation (σ) | GEE–SNOTEL by Regional Elevation Band | ||||||
---|---|---|---|---|---|---|---|
State | # Stations Sampled | RMSE SNOTEL vs. GEE(SCF) | SNOTEL (+/−SCF) | GEE (+/− SCF) | Low (SCF) | Mid (SCF) | High (SCF) |
Alaska | 35 | 0.1 | 0.07 | 0.09 | −0.09 | −0.03 | −0.04 |
Arizona | 8 | 0.09 | 0.07 | 0.07 | −0.09 | −0.07 | −0.07 |
California | 29 | 0.13 | 0.10 | 0.07 | −0.09 | −0.01 | −0.07 |
Colorado | 113 | 0.10 | 0.08 | 0.08 | −0.10 | −0.05 | −0.05 |
Idaho | 79 | 0.11 | 0.09 | 0.09 | −0.10 | −0.06 | −0.04 |
Montana | 86 | 0.14 | 0.10 | 0.10 | −0.12 | −0.09 | −0.05 |
New Mexico | 17 | 0.13 | 0.09 | 0.09 | −0.07 | −0.11 | −0.13 |
Nevada | 39 | 0.11 | 0.09 | 0.1 | −0.09 | −0.10 | −0.05 |
Oregon | 68 | 0.15 | 0.13 | 0.09 | −0.10 | −0.11 | −0.10 |
Utah | 129 | 0.10 | 0.08 | 0.09 | −0.10 | −0.06 | −0.02 |
Washington | 67 | 0.16 | 0.08 | 0.11 | −0.16 | −0.15 | −0.07 |
Wyoming | 88 | 0.1 | 0.09 | 0.08 | −0.07 | −0.05 | −0.05 |
Mean SDD | GEE–SNOTEL by Regional Elevation Band | ||||||
---|---|---|---|---|---|---|---|
State | # SNOTEL Stations Sampled | RMSESNOTEL vs. GEE (Days) | SNOTEL (Day) | GEE (Day) | Low (Days) | Mid (Days) | High (Days) |
Alaska | 35 | 11 | 14-May | 9-May | −4 | −4 | −6 |
Arizona | 8 | 13 | 6-Apr | 25-Mar | −11 | −13 | −12 |
California | 28 | 24 | 18-May | 4-May | −19 | 3 | −6 |
Colorado | 113 | 17 | 20-May | 11-May | −15 | −7 | −4 |
Idaho | 78 | 26 | 20-May | 5-May | −24 | −12 | −9 |
Montana | 86 | 27 | 28-May | 13-May | −18 | −14 | −9 |
New Mexico | 17 | 19 | 21-Apr | 8-Apr | −12 | −13 | −17 |
Utah | 129 | 19 | 8-May | 1-May | −14 | −7 | −1 |
Washington | 67 | 30 | 26-May | 4-May | −31 | −27 | −8 |
Wyoming | 87 | 18 | 22-May | 15-May | −7 | −6 | −5 |
True Positive (TP) | True Negative (TN) | False Positive (FP) | False Negative (FN) | Accuracy (A) Kappa (K) | |
---|---|---|---|---|---|
Entire Time Series n = 3,692,026 | 1,451,797 (39%) | 1,543,337 (42%) | 196,740 (5%) | 500,152 (14%) | 0.81 (A) 0.62 (K) |
Early-Season (Oct, Nov, Dec) n = 930,783 | 420,149 (45%) | 263,841 (28%) | 82,702 (9%) | 164,091 (18%) | 0.73 (A) 0.46 (K) |
Mid-Season (Jan, Feb, Mar) n = 913,310 | 759,940 (83%) | 18,492 (2%) | 33,253 (4%) | 101,625 (11%) | 0.85 (A) 0.15 (K) |
Late-Season (Apr, May, Jun) n = 919,404 | 269,728 (29%) | 383,927 (42%) | 65,910 (7%) | 199,839 (22%) | 0.71 (A) 0.43 (K) |
SCF Metric | SDD Metric |
---|---|
Annual date range (WY2001 to WY2019) | Annual date range (WY2000 to WY2019) |
Custom spatial extent Shapefile import | Custom spatial extent Shapefile import |
Global coverage Pixel-level data inspector Time series plotting | Northern Hemisphere coverage Pixel-level data inspector Time series plotting |
Data table output (.csv) | Data table output (.csv) |
GeoTIFF image export | GeoTIFF image export |
SRTM 30 m DEM analysis | SRTM 30 m DEM analysis |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crumley, R.L.; Palomaki, R.T.; Nolin, A.W.; Sproles, E.A.; Mar, E.J. SnowCloudMetrics: Snow Information for Everyone. Remote Sens. 2020, 12, 3341. https://doi.org/10.3390/rs12203341
Crumley RL, Palomaki RT, Nolin AW, Sproles EA, Mar EJ. SnowCloudMetrics: Snow Information for Everyone. Remote Sensing. 2020; 12(20):3341. https://doi.org/10.3390/rs12203341
Chicago/Turabian StyleCrumley, Ryan L., Ross T. Palomaki, Anne W. Nolin, Eric A. Sproles, and Eugene J. Mar. 2020. "SnowCloudMetrics: Snow Information for Everyone" Remote Sensing 12, no. 20: 3341. https://doi.org/10.3390/rs12203341
APA StyleCrumley, R. L., Palomaki, R. T., Nolin, A. W., Sproles, E. A., & Mar, E. J. (2020). SnowCloudMetrics: Snow Information for Everyone. Remote Sensing, 12(20), 3341. https://doi.org/10.3390/rs12203341