Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. COVID-19 Lockdown in Germany, Spring 2020
2.2. Study Sites
2.3. Calibrated Camera System and Night Sky Brightness Processing Software
2.4. Night-Time Light Analysis
3. Results
3.1. Ground-Gased Imaging Data
3.2. Zenith Luminance and Artificial Skyglow
3.3. Illuminance
3.4. Correlated Color Temperature
3.5. Night-Time Light Analysis
4. Discussion
- Drastic natural atmospheric changes (desert dust, fires, volcanic ash);
- Seasonal changes (leaves, ground albedo, snow);
- Reduction of ALAN emissions by automated and manual switch offs;
- Change to modern (shielded) lighting technology [42];
- Anthropogenic atmospheric changes (air quality, air pollution);
- Reduction of ALAN emissions by changed behavior.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Stop | Name | Distance (km) | Latitude | Longitude | 2017 Time | 2020 Time |
---|---|---|---|---|---|---|
1 | Museumsinsel | 0.3 | 52.52004 | 13.39994 | 1:11 | 0:51 |
2 | Waldeckpark | 1.5 | 52.50654 | 13.40359 | 1:38 | 1:02 |
3 | Park am Gleisdreieck | 3.3 | 52.49472 | 13.3788 | 1:57 | 1:11 |
4 | Hans Baluschek Park | 6.9 | 52.46498 | 13.35863 | 2:23 | 1:27 |
5 | Gemeindepark Lankwitz | 10.5 | 52.43101 | 13.35208 | 2:44 | 1:45 |
6 | Gut Osdorf | 15 | 52.39304 | 13.33466 | 3:02 | 1:54 |
7 | Wietstock | 28 | 52.2761 | 13.30828 | 3:31 | 2:11 |
8 | Christinendorf | 34.5 | 52.21657 | 13.29815 | 3:56 | 2:30 |
9 | Alexanderdorf | 38.3 | 52.17978 | 13.31725 | 4:05 | 2:40 |
10 | Sperenberg | 43.5 | 52.12899 | 13.36726 | 4:19 | 2:55 |
11 | Stülpe | 51.5 | 52.06222 | 13.3261 | 4:31 | 3:09 |
12 | Petkus | 58.5 | 51.99443 | 13.35099 | 4:47 | 3:21 |
Appendix B
Name | Annual Change |
---|---|
Transect area | −0.1%/y |
Berlin | +0.6%/y |
Ludwigsfelde | +5.8%/y |
Luckenwalde | −0.4%/y |
Baruth | −1.9%/y |
Appendix C
AERONET FUB | 28 March 2017 | 25 March 2020 |
---|---|---|
AOD 440 nm | 0.19 | 0.18 |
AOD 500 nm | 0.17 | 0.15 |
AOD 675 nm | 0.13 | 0.1 |
References
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536. [Google Scholar]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2020, 27, taaa037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Peng, Z.; Guo, Y.; Xiao, Y.; Zhang, L. Lockdown may partially halt the spread of 2019 novel coronavirus in Hubei province, China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Moser, C.A.; Yared, P. Pandemic Lockdown: The Role of Government Commitment; No. w27062; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Gualano, M.R.; Lo Moro, G.; Voglino, G.; Bert, F.; Siliquini, R. Effects of COVID-19 lockdown on mental health and sleep disturbances in Italy. Int. J. Environ. Res. Public Health 2020, 17, 4779. [Google Scholar] [CrossRef] [PubMed]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: A longitudinal study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based bathymetry and water quality retrieval using planetscope imagery: Impacts of 2020 Covid-19 lockdown and 2019 extreme flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Chung, S.Y.; Roy, P.D.; Muthukumar, P.; Kumar, M. Imprints of pandemic lockdown on subsurface water quality in the coastal industrial city of Tuticorin, south India: A revival perspective. Sci. Total Environ. 2020, 738, 139848. [Google Scholar] [CrossRef]
- Liu, Q.; Sha, D.; Liu, W.; Houser, P.; Zhang, L.; Hou, R.; Lan, H.; Flynn, C.; Lu, M.; Hu, T.; et al. Spatiotemporal patterns of Covid-19 impact on human activities and environment in mainland china using nighttime light and air quality data. Remote Sens. 2020, 12, 1576. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Kuester, T.; Sanchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [Green Version]
- Riegel, K.W. Light pollution. Science 1973, 179, 1285–1291. [Google Scholar] [CrossRef]
- Schroer, S.; Hölker, F. Impact of lighting on flora and fauna. In Handbook of Advanced Lighting Technology; Karlicek, R., Sun, C.C., Zissis, G., Ma, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 957–989. [Google Scholar]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Matzke, E.B. The effect of street lights in delaying leaf-fall in certain trees. Am. J. Bot. 1936, 23, 446–452. [Google Scholar] [CrossRef]
- Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. Lond. B Biol. Sci. 2015, 282, 20151745. [Google Scholar] [CrossRef] [Green Version]
- Kurvers, R.H.J.M.; Drägestein, J.; Hölker, F.; Jechow, A.; Krause, J.; Bierbach, D. Artificial light at night affects emergence from a refuge and space use in guppies. Sci. Rep. 2018, 8, 14131. [Google Scholar] [CrossRef] [Green Version]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W.; et al. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Ryu, S.H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef]
- Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140117. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ściężor, T.; Kubala, M. Particulate matter as an amplifier for astronomical light pollution. Mon. Not. R. Astron. Soc. 2014, 444, 2487–2493. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Kolláth, Z.; Ribas, S.J.; Spoelstra, H.; Hölker, F.; Kyba, C.C.M. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 2017, 7, 6741. [Google Scholar] [CrossRef] [PubMed]
- Jechow, A.; Hölker, F.; Kyba, C. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 2019, 9, 1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jechow, A.; Hölker, F. Snowglow—The amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. J. Imaging 2019, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Ribas, S.J.; Domingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C.M. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A. Observing the impact of WWF Earth hour on urban light pollution: A case study in Berlin 2018 using differential photometry. Sustainability 2019, 11, 750. [Google Scholar] [CrossRef] [Green Version]
- Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C. Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107120. [Google Scholar] [CrossRef]
- Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.C.; Sánchez de Miguel, A.; Zamorano, J. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Lighting Res. Technol. 2019, 51, 1092–1107. [Google Scholar] [CrossRef] [Green Version]
- Kolláth, Z.; Dömény, A. Night sky quality monitoring in existing and planned dark sky parks by digital cameras. Int. J. Sustain. Light. 2017, 19, 61–68. [Google Scholar] [CrossRef]
- Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 218, p. 012001. [Google Scholar]
- Jechow, A.; Kyba, C.C.; Hölker, F. Beyond all-sky: Assessing ecological light pollution using multi-spectral full-sphere fisheye lens imaging. J. Imaging 2019, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Kyba, C.C.; Hölker, F. Mapping the brightness and color of urban to rural skyglow with all-sky photometry. J. Quant. Spectrosc. Radiat. Transf. 2020, 250, 106988. [Google Scholar] [CrossRef]
- Dieter, H. Germany in the COVID-19 crisis: Poster child or just lucky? J. Aust. Political Econ. 2020, 85, 101. [Google Scholar]
- Buecker, S.; Horstmann, K.T.; Krasko, J.; Kritzler, S.; Terwiel, S.; Kaiser, T.; Luhmann, M. Changes in daily loneliness during the first four weeks of the Covid-19 lockdown in Germany. PsyArXiv 2020. [Google Scholar] [CrossRef]
- VIIRS Day Night Band (DNB) Night-Time Lights Monthly Composites. Available online: https://eogdata.mines.edu/download_dnb_composites.html (accessed on 25 September 2020).
- QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.org (accessed on 11 November 2019).
- Stare, J.; Kyba, C. Radiance Light Trends [web application]. GFZ Data Serv. 2019. [Google Scholar] [CrossRef]
- Berlin.de. Umwelt, Verkehr und Klimaschutz “Elektrische Beleuchtung”. Available online: https://www.berlin.de/sen/uvk/verkehr/infrastruktur/oeffentliche-beleuchtung/elektrische-beleuchtung/ (accessed on 26 September 2020).
- Kolláth, Z.; Dömény, A.; Kolláth, K.; Nagy, B. Qualifying lighting remodelling in a Hungarian city based on light pollution effects. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 46–51. [Google Scholar] [CrossRef]
- Airport Berlin Brandenburg Flight Statistics. Available online: https://www.berlin-airport.de/en/press/background-information/traffic-statistics/index.php (accessed on 26 September 2020).
- EUROCONTROL COVID-19 Daily Airtraffic Variation Dashboard. Available online: https://www.eurocontrol.int/Economics/DailyTrafficVariation-States.html (accessed on 29 September 2020).
- Burkhardt, U.; Kärcher, B. Global radiative forcing from contrail cirrus. Nat. Clim. Chang. 2011, 1, 54–58. [Google Scholar] [CrossRef] [Green Version]
- DLR Press Release “Up to 90 Percent Fewer Condensation Trails Due to Reduced Air Traffic over Europe”. Available online: https://www.dlr.de/content/en/articles/news/2020/02/20200520_fewer-condensation-trails-due-to-reduced-air-traffic.html (accessed on 29 September 2020).
- Kuechly, H.U.; Kyba, C.C.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 2012, 126, 39–50. [Google Scholar] [CrossRef]
- LA Times. How Power Companies are Keeping Your Lights on during the Pandemic. Available online: https://www.latimes.com/environment/story/2020-03-19/how-power-companies-are-keeping-your-lights-on-during-the-pandemic (accessed on 26 September 2020).
Stop | Distance | (mcd/m2) 2017 | (mcd/m2) 2020 | Ratio 2020/2017 | (magSQM/arcsec2) 2017 | (magSQM/arcsec2) 2020 |
---|---|---|---|---|---|---|
1 | 0.3 | 11.30 | 8.90 | 0.79 | 17.4 | 17.7 |
2 | 1.5 | 7.50 | 6.80 | 0.91 | 17.9 | 18.0 |
3 | 3.3 | 6.00 | 5.50 | 0.92 | 18.1 | 18.2 |
4 | 6.9 | 4.30 | 3.80 | 0.88 | 18.5 | 18.6 |
5 | 10.5 | 3.60 | 3.10 | 0.86 | 18.7 | 18.8 |
6 | 15.0 | 1.90 | 1.70 | 0.89 | 19.4 | 19.5 |
7 | 28.0 | 0.67 | 0.63 | 0.94 | 20.5 | 20.6 |
8 | 34.5 | 0.42 | 0.38 | 0.90 | 21.0 | 21.1 |
9 | 38.3 | 0.35 | 0.32 | 0.91 | 21.2 | 21.3 |
10 | 43.5 | 0.33 | 0.28 | 0.85 | 21.3 | 21.4 |
11 | 51.5 | 0.27 | 0.22 | 0.81 | 21.5 | 21.7 |
12 | 58.5 | 0.26 | 0.21 | 0.81 | 21.6 | 21.8 |
Stop | Distance | (mcd/m2) 2017 | (mcd/m2) 2020 | Ratio 2020/2017 |
---|---|---|---|---|
1 | 0.3 | 11.13 | 8.73 | 0.78 |
2 | 1.5 | 7.33 | 6.63 | 0.90 |
3 | 3.3 | 5.83 | 5.33 | 0.91 |
4 | 6.9 | 4.13 | 3.63 | 0.88 |
5 | 10.5 | 3.43 | 2.93 | 0.85 |
6 | 15.0 | 1.73 | 1.53 | 0.88 |
7 | 28.0 | 0.50 | 0.46 | 0.92 |
8 | 34.5 | 0.25 | 0.21 | 0.84 |
9 | 38.3 | 0.18 | 0.15 | 0.83 |
10 | 43.5 | 0.16 | 0.11 | 0.68 |
11 | 51.5 | 0.10 | 0.05 | 0.49 |
12 | 58.5 | 0.09 | 0.04 | 0.43 |
Stop | Distance (km) | (mlx) 2017 | (mlx) 2020 | Ratio | (mlx) 2017 | (mlx) 2020 | Ratio |
---|---|---|---|---|---|---|---|
1 | 0.3 | 72.6 | 51.9 | 0.71 | 263.0 | 210.0 | 0.80 |
2 | 1.5 | 34.8 | 35.5 | 1.02 | 88.6 | 106.3 | 1.20 |
3 | 3.3 | 32.4 | 27.5 | 0.85 | 83.3 | 65.6 | 0.79 |
4 | 6.9 | 26.2 | 20.7 | 0.79 | 64.2 | 50.0 | 0.78 |
5 | 10.5 | 19.0 | 14.2 | 0.75 | 41.6 | 29.8 | 0.72 |
6 | 15.0 | 14.0 | 11.0 | 0.79 | 45.8 | 34.4 | 0.75 |
7 | 28.0 | 4.6 | 4.0 | 0.87 | 13.3 | 11.6 | 0.87 |
8 | 34.5 | 2.6 | 2.3 | 0.88 | 7.2 | 6.9 | 0.96 |
9 | 38.3 | 2.0 | 1.9 | 0.95 | 5.4 | 5.5 | 1.02 |
10 | 43.5 | 1.8 | 1.7 | 0.94 | 4.7 | 4.4 | 0.94 |
11 | 51.5 | 1.4 | 1.3 | 0.93 | 3.4 | 3.3 | 0.97 |
12 | 58.5 | 1.3 | 1.2 | 0.92 | 3.4 | 3.1 | 0.91 |
Stop | Distance | CCT (K) 2017 (full) | CCT (K) 2020 (full) | Δ (2020–2017) | CCT (K) 2017 (zenith) | CCT (K) 2020 (zenith) | Δ (2020–2017) |
---|---|---|---|---|---|---|---|
1 | 0.3 | 2700 | 2800 | 100 | 4100 | 4100 | 0 |
2 | 1.5 | 3000 | 3100 | 100 | 3700 | 4000 | 300 |
3 | 3.3 | 3300 | 3500 | 200 | 3800 | 4100 | 300 |
4 | 6.9 | 3300 | 3700 | 400 | 3700 | 4100 | 400 |
5 | 10.5 | 3400 | 3700 | 300 | 3800 | 4100 | 300 |
6 | 15.0 | 3000 | 3400 | 400 | 3600 | 4000 | 400 |
7 | 28.0 | 2800 | 3200 | 400 | 3400 | 3700 | 300 |
8 | 34.5 | 2800 | 3000 | 200 | 3500 | 3700 | 200 |
9 | 38.3 | 2900 | 3100 | 200 | 3700 | 3700 | 0 |
10 | 43.5 | 3000 | 3100 | 100 | 3700 | 3700 | 0 |
11 | 51.5 | 3000 | 3100 | 100 | 3700 | 3700 | 0 |
12 | 58.5 | 3000 | 3000 | 0 | 3800 | 3700 | −100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jechow, A.; Hölker, F. Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sens. 2020, 12, 3412. https://doi.org/10.3390/rs12203412
Jechow A, Hölker F. Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sensing. 2020; 12(20):3412. https://doi.org/10.3390/rs12203412
Chicago/Turabian StyleJechow, Andreas, and Franz Hölker. 2020. "Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany" Remote Sensing 12, no. 20: 3412. https://doi.org/10.3390/rs12203412
APA StyleJechow, A., & Hölker, F. (2020). Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sensing, 12(20), 3412. https://doi.org/10.3390/rs12203412