Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Data
2.2.1. Snow Cover Data
2.2.2. Meteorological Data
2.3. Drought Indices
2.4. Applied Models
2.4.1. Multiple Linear Regression (MLR)
2.4.2. Least Square Support Vector Machine (LSSVM)
2.4.3. Group Method of Data Handling (GMDH)
2.4.4. Multilayer Perceptron (MLP)
2.4.5. Multilayer Perceptron-Grey Wolf Optimization (MLP-GWO)
2.5. Model Performance Criteria
3. Results
3.1. Investigating the Relationship between Changes in the Snow Cover Area and Drought Indices
3.2. Results of Snow Cover Estimation
3.2.1. Input Selection
3.2.2. Models’ Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tsai, Y.L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote sensing of snow cover using spaceborne SAR: A review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Broxton, P.D.; Harpold, A.A.; Biederman, J.A.; Troch, P.A.; Molotch, N.P.; Brooks, P.D. Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology 2015, 8. [Google Scholar] [CrossRef]
- Stone, R.S.; Dutton, E.G.; Harris, J.M.; Longenecker, D. Earlier spring snowmelt in northern Alaska as an indicator of climate change. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Lindsay, C.; Zhu, J.; Miller, A.E.; Kirchner, P.; Wilson, T.L. Deriving snow cover metrics for Alaska from MODIS. Remote Sens. 2015, 7, 12961–12985. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Huang, X.; Li, X.; Liang, T. MODIS fractional snow cover mapping using machine learning technology in a mountainous area. Remote Sens. 2020, 12, 962. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric. Water Manag. 2020, 237. [Google Scholar] [CrossRef]
- Roebber, P.J.; Bruening, S.L.; Schultz, D.M.; Cortinas, J.V. Improving snowfall forecasting by diagnosing snow density. Weather Forecast. 2003, 18. [Google Scholar] [CrossRef] [Green Version]
- Tabari, H.; Marofi, S.; Abyaneh, H.Z.; Sharifi, M.R. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput. Appl. 2010, 19. [Google Scholar] [CrossRef]
- Lee, G.; Kim, D.; Kwon, H.H.; Choi, E. Estimation of maximum daily fresh snow accumulation using an artificial neural network model. Adv. Meteorol. 2019, 2019. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol. 2014, 511. [Google Scholar] [CrossRef]
- Aghelpour, P.; Bahrami-Pichaghchi, H.; Kisi, O. Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Comput. Electron. Agric. 2020, 170. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving the MODIS global snow-mapping algorithm. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Singapore, 3–8 August 1997; Volume 2. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83. [Google Scholar] [CrossRef] [Green Version]
- Bashir, F.; Rasul, G. Estimation of average snow cover over northern pakistan. Pakistan J. Meteorol. 2008, 7. [Google Scholar]
- Guhathakurta, P.; Sreejith, O.P.; Menon, P.A. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 2011, 120. [Google Scholar] [CrossRef]
- Bazrafshan, J.; Nadi, M.; Ghorbani, K. Comparison of Empirical Copula-Based Joint Deficit Index (JDI) and Multivariate Standardized Precipitation Index (MSPI) for Drought Monitoring in Iran. Water Resour. Manag. 2015, 29. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; No. 45; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Van Der Schrier, G.; Jones, P.D.; Briffa, K.R. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Bhalme, H.N.; Mooley, D.A. Large-scale droughts/ floods and monsoon circulation. Mon. Weather Rev. 1980, 108. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Nolan, J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Bazrafshan, J.; Hejabi, S.; Rahimi, J. Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resour. Manag. 2014, 28. [Google Scholar] [CrossRef]
- Kao, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B.; Shamshirband, S.; Chau, K. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 584–597. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, A.G. Heuristic self-organization in problems of engineering cybernetics. Automatica 1970, 6. [Google Scholar] [CrossRef]
- Aghelpour, P.; Varshavian, V. Evaluation of stochastic and artificial intelligence models in modeling and predicting of river daily flow time series. Stoch. Environ. Res. Risk Assess. 2020, 34, 33–50. [Google Scholar] [CrossRef]
- Ashrafzadeh, A.; Kişi, O.; Aghelpour, P.; Biazar, S.M.; Masouleh, M.A. Comparative study of time series models, support vector machines, and gmdh in forecasting long-term evapotranspiration rates in northern iran. J. Irrig. Drain. Eng. 2020, 146. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5. [Google Scholar] [CrossRef]
- Mohammadi, B.; Ahmadi, F.; Mehdizadeh, S.; Guan, Y.; Pham, Q.B.; Linh, N.T.T.; Tri, D.Q. Developing novel robust models to improve the accuracy of daily streamflow modeling. Water Resour. Manag. 2020. [Google Scholar] [CrossRef]
- Vaheddoost, B.; Guan, Y.; Mohammadi, B. Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69. [Google Scholar] [CrossRef] [Green Version]
- Muro, C.; Escobedo, R.; Spector, L.; Coppinger, R.P. Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Processes 2011, 88. [Google Scholar] [CrossRef] [PubMed]
- Aghelpour, P.; Mohammadi, B.; Biazar, S.M. Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theor. Appl. Climatol. 2019, 138, 1471–1480. [Google Scholar] [CrossRef]
- Sauter, T.; Weitzenkamp, B.; Schneider, C. Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network. Int. J. Climatol. 2010, 30. [Google Scholar] [CrossRef]
- Binaghi, E.; Pedoia, V.; Guidali, A.; Guglielmin, M. Snow cover thickness estimation using radial basis function networks. Cryosphere 2013, 7. [Google Scholar] [CrossRef] [Green Version]
Variable | Slope | Mean | StDev | C.V. | Minimum | Maximum | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Snow Cover (SC) ) | Northern Slope | 2307 | 3153 | 136.65 | 0.00 | 14066 | 1.43 | 1.40 |
Southern Slope | 1956 | 3290 | 168.23 | 0.00 | 13538 | 1.89 | 2.68 | |
Minimum Temperature (Tmin) ) | Northern Slope | 2.19 | 7.63 | 347.90 | −19.61 | 14.09 | −0.37 | −0.87 |
Southern Slope | 3.32 | 8.69 | 261.81 | −20.12 | 16.72 | −0.31 | −0.98 | |
Maximum Temperature (Tmax) ) | Northern Slope | 14.52 | 9.93 | 68.39 | −4.43 | 30.09 | −0.11 | −1.39 |
Southern Slope | 15.87 | 10.78 | 67.90 | −4.48 | 32.22 | −0.13 | −1.43 | |
Global Solar Radiation (GSR) ) | Northern Slope | 19.37 | 6.93 | 35.81 | 8.35 | 32.11 | −0.01 | −1.29 |
Southern Slope | 20.91 | 7.12 | 34.06 | 9.25 | 33.05 | −0.09 | −1.34 | |
Relative Humidity (RH) ) | Northern Slope | 0.59 | 0.16 | 26.48 | 0.27 | 0.92 | 0.33 | −1.05 |
Southern Slope | 0.48 | 0.18 | 38.31 | 0.22 | 0.87 | 0.65 | −0.82 | |
Precipitation (P) ) | Northern Slope | 46.92 | 32.64 | 69.55 | 0.84 | 160.35 | 0.74 | 0.24 |
Southern Slope | 24.00 | 19.28 | 80.36 | 0.10 | 81.35 | 0.97 | 0.60 | |
Wind Velocity (W) ) | Northern Slope | 2.64 | 0.38 | 14.24 | 1.62 | 3.66 | 0.16 | 0.00 |
Southern Slope | 2.86 | 0.51 | 17.77 | 1.64 | 4.11 | −0.01 | −0.47 |
Name | Developed by | Input Variable(s) | Scale | More Information and Details about the Calculation Steps |
---|---|---|---|---|
Palmer Drought Severity Index (PDSI) | Palmer, 1965 [19] | Precipitation; temperature | Monthly | Palmer, 1965 [19]; Van Der Schrier et al., 2011 [20] |
Bahlme and Mooley Drought Index (BMDI) | Bahlme and Mooley, 1980 [21] | Precipitation | Monthly | Bahlme and Mooley, 1980 [21] |
Standardized Precipitation Index (SPI) | McKee et al., 1993 [22] | Precipitation | Monthly | McKee et al., 1993 [22]; Svoboda et al., 2012 [11] |
Multivariate Standardized Precipitation Index (MSPI) | Bazrafshan et al., 2014 [23] | Precipitation | Monthly | Bazrafshan et al., 2014 [23]; Bazrafshan et al., 2015 [18]; Aghelpour et al., 2020 [12] |
Modified Standardized Precipitation Index (SPImod) | Kao and Govindaraju, 2010 [24] | Precipitation | Monthly | Kao and Govindaraju, 2010 [24] |
Joint Deficit Index (JDI) | Kao and Govindaraju, 2010 [24] | Precipitation | Monthly | Kao and Govindaraju, 2010 [24]; Bazrafshan et al., 2015 [18] |
Standardized Precipitation-Evapotranspiration Index (SPEI) | Vicente-Serrano et al., 2010 [25] | Precipitation; temperature | Monthly | Vicente-Serrano et al., 2010 [25] |
Index | SPI1 | SPI2 | SPI3 | SPI4 | SPI5 | SPI6 | SPI7 | SPI8 | SPI9 | SPI10 | SPI11 | SPI12 |
Correlation coefficient | 0.622 ** | 0.723 ** | 0.720 ** | 0.641 ** | 0.503 ** | 0.327 ** | 0.157 | 0.001 | −0.100 | −0.128 | −0.111 | −0.024 |
Index | SPI13 | SPI14 | SPI15 | SPI16 | SPI17 | SPI18 | SPI19 | SPI20 | SPI21 | SPI22 | SPI23 | SPI24 |
Correlation coefficient | 0.112 | 0.241 ** | 0.319 ** | 0.332 ** | 0.280 ** | 0.194 * | 0.075 | −0.045 | −0.137 | −0.177 * | −0.138 | −0.053 |
Index | SPEI1 | SPEI2 | SPEI3 | SPEI4 | SPEI5 | SPEI6 | SPEI7 | SPEI8 | SPEI9 | SPEI10 | SPEI11 | SPEI12 |
Correlation coefficient | 0.094 | 0.097 | 0.062 | 0.036 | 0.010 | −0.015 | −0.008 | −0.020 | −0.008 | −0.007 | −0.006 | 0.007 |
Index | SPEI13 | SPEI14 | SPEI15 | SPEI16 | SPEI17 | SPEI18 | SPEI19 | SPEI20 | SPEI21 | SPEI22 | SPEI23 | SPEI24 |
Correlation coefficient | 0.017 | 0.011 | 0.020 | 0.005 | 0.005 | −0.006 | −0.015 | −0.014 | 0.013 | 0.014 | 0.038 | 0.043 |
Index | SPImod1 | SPImod2 | SPImod3 | SPImod4 | SPImod5 | SPImod6 | SPImod7 | SPImod8 | SPImod9 | SPImod10 | SPImod11 | SPImod12 |
Correlation coefficient | 0.129 | 0.131 | 0.070 | 0.017 | −0.019 | −0.028 | −0.015 | −0.022 | −0.010 | −0.014 | −0.015 | −0.011 |
Index | SPImod13 | SPImod14 | SPImod15 | SPImod16 | SPImod17 | SPImod18 | SPImod19 | SPImod20 | SPImod21 | SPImod22 | SPImod23 | SPImod24 |
Correlation coefficient | 0.007 | 0.002 | 0.008 | −0.009 | −0.015 | −0.026 | −0.036 | −0.023 | −0.007 | 0.003 | 0.022 | 0.031 |
Index | MSPI1-3 | MSPI1-6 | MSPI1-9 | MSPI1-12 | MSPI3-6 | MSPI3-12 | MSPI6-12 | MSPI12-24 | MSPI24-48 | JDI | BMDI | PDSI |
Correlation coefficient | 0.085 | 0.041 | 0.039 | 0.018 | −0.005 | −0.002 | −0.021 | −0.028 | 0.037 | 0.008 | 0.024 | −0.034 |
Index | SPI1 | SPI2 | SPI3 | SPI4 | SPI5 | SPI6 | SPI7 | SPI8 | SPI9 | SPI10 | SPI11 | SPI12 |
Correlation coefficient | 0.617 ** | 0.638 ** | 0.577 ** | 0.441 ** | 0.272 ** | 0.058 | −0.122 | −0.267 ** | −0.328 ** | −0.305 ** | −0.198 * | −0.041 |
Index | SPI13 | SPI14 | SPI15 | SPI16 | SPI17 | SPI18 | SPI19 | SPI20 | SPI21 | SPI22 | SPI23 | SPI24 |
Correlation coefficient | 0.120 | 0.222 ** | 0.252 ** | 0.209 * | 0.115 | −0.010 | −0.136 | −0.246 ** | −0.300 ** | −0.274 ** | −0.188 * | −0.078 |
Index | SPEI1 | SPEI2 | SPEI3 | SPEI4 | SPEI5 | SPEI6 | SPEI7 | SPEI8 | SPEI9 | SPEI10 | SPEI11 | SPEI12 |
Correlation coefficient | 0.019 | −0.079 | −0.186 * | −0.190 * | −0.165 * | −0.124 | −0.085 | −0.044 | −0.033 | −0.024 | −0.046 | −0.032 |
Index | SPEI13 | SPEI14 | SPEI15 | SPEI16 | SPEI17 | SPEI18 | SPEI19 | SPEI20 | SPEI21 | SPEI22 | SPEI23 | SPEI24 |
Correlation coefficient | −0.026 | −0.044 | −0.051 | −0.065 | −0.101 | −0.100 | −0.105 | −0.087 | −0.033 | 0.074 | 0.020 | 0.017 |
Index | SPImod1 | SPImod2 | SPImod3 | SPImod4 | SPImod5 | SPImod6 | SPImod7 | SPImod8 | SPImod9 | SPImod10 | SPImod11 | SPImod12 |
Correlation coefficient | 0.081 | 0.047 | −0.001 | −0.065 | −0.097 | −0.128 | −0.100 | −0.091 | −0.063 | −0.039 | −0.030 | −0.021 |
Index | SPImod13 | SPImod14 | SPImod15 | SPImod16 | SPImod17 | SPImod18 | SPImod19 | SPImod20 | SPImod21 | SPImod22 | SPImod23 | SPImod24 |
Correlation coefficient | −0.020 | −0.023 | −0.041 | −0.070 | −0.090 | −0.101 | −0.096 | −0.069 | −0.049 | −0.035 | −0.013 | −0.005 |
Index | MSPI1-3 | MSPI1-6 | MSPI1-9 | MSPI1-12 | MSPI3-6 | MSPI3-12 | MSPI6-12 | MSPI12-24 | MSPI24-48 | JDI | BMDI | PDSI |
Correlation coefficient | 0.029 | –0.027 | –0.031 | –0.016 | –0.061 | –0.023 | –0.007 | –0.017 | 0.010 | –0.040 | 0.022 | –0.064 |
Zone | Name of the Input Scenario | Input Variables | Scenarios for the Models | ||||
---|---|---|---|---|---|---|---|
MLR | SVM | GMDH | MLP | MLP-GWO | |||
Northern Slope | Scenario 1 | Tmin | MLR1 | SVM1 | GMDH1 | MLP1 | MLP-GWO1 |
Scenario 2 | Tmin; Tmax | MLR2 | SVM2 | GMDH2 | MLP2 | MLP-GWO2 | |
Scenario 3 | Tmin; Tmax; RH | MLR3 | SVM3 | GMDH3 | MLP3 | MLP-GWO3 | |
Scenario 4 | Tmin; Tmax; RH; GSR | MLR4 | SVM4 | GMDH4 | MLP4 | MLP-GWO4 | |
Scenario 5 | Tmin; Tmax; RH; GSR; P | MLR5 | SVM5 | GMDH5 | MLP5 | MLP-GWO5 | |
Scenario 6 | Tmin; Tmax; RH; GSR; P; W | MLR6 | SVM6 | GMDH6 | MLP6 | MLP-GWO6 | |
Southern Slope | Scenario 1 | Tmin | MLR1 | SVM1 | GMDH1 | MLP1 | MLP-GWO1 |
Scenario 2 | Tmin; RH | MLR2 | SVM2 | GMDH2 | MLP2 | MLP-GWO2 | |
Scenario 3 | Tmin; RH; Tmax | MLR3 | SVM3 | GMDH3 | MLP3 | MLP-GWO3 | |
Scenario 4 | Tmin; RH; Tmax; GSR | MLR4 | SVM4 | GMDH4 | MLP4 | MLP-GWO4 | |
Scenario 5 | Tmin; RH; Tmax; GSR; P | MLR5 | SVM5 | GMDH5 | MLP5 | MLP-GWO5 | |
Scenario 6 | Tmin; RH; Tmax; GSR; P; W | MLR6 | SVM6 | GMDH6 | MLP6 | MLP-GWO6 |
Slope | Input Scenario | Train | Test | ||||||
---|---|---|---|---|---|---|---|---|---|
NRMSE | RMSE (km2) | WI | NS | NRMSE | RMSE (km2) | WI | NS | ||
Northern Slope | MLR1 | 0.116 | 1631.166 | 0.914 | 0.746 | 0.152 | 1386.662 | 0.939 | 0.762 |
LSSVM1 | 0.097 | 1366.625 | 0.948 | 0.822 | 0.175 | 1601.406 | 0.937 | 0.683 | |
GMDH1 | 0.105 | 1475.582 | 0.931 | 0.792 | 0.133 | 1216.993 | 0.956 | 0.817 | |
MLP1 | 0.100 | 1402.681 | 0.948 | 0.812 | 0.158 | 1440.066 | 0.948 | 0.744 | |
MLP-GWO1 | 0.100 | 1403.624 | 0.943 | 0.812 | 0.128 | 1170.852 | 0.961 | 0.831 | |
MLR2 | 0.115 | 1621.970 | 0.916 | 0.749 | 0.154 | 1405.929 | 0.939 | 0.756 | |
LSSVM2 | 0.083 | 1169.151 | 0.964 | 0.870 | 0.170 | 1551.450 | 0.939 | 0.702 | |
GMDH2 | 0.095 | 1338.373 | 0.948 | 0.829 | 0.127 | 1161.180 | 0.961 | 0.833 | |
MLP2 | 0.088 | 1239.241 | 0.958 | 0.853 | 0.144 | 1314.323 | 0.953 | 0.786 | |
MLP-GWO2 | 0.091 | 1285.300 | 0.953 | 0.842 | 0.138 | 1264.108 | 0.956 | 0.802 | |
MLR3 | 0.110 | 1544.673 | 0.927 | 0.772 | 0.145 | 1329.095 | 0.944 | 0.782 | |
LSSVM3 | 0.081 | 1144.194 | 0.965 | 0.875 | 0.139 | 1271.612 | 0.955 | 0.800 | |
GMDH3 | 0.084 | 1179.983 | 0.963 | 0.867 | 0.107 | 980.987 | 0.971 | 0.881 | |
MLP3 | 0.093 | 1314.088 | 0.949 | 0.835 | 0.111 | 1017.925 | 0.968 | 0.872 | |
MLP-GWO3 | 0.092 | 1296.527 | 0.948 | 0.840 | 0.094 | 859.117 | 0.973 | 0.909 | |
MLR4 | 0.110 | 1543.266 | 0.927 | 0.773 | 0.145 | 1323.238 | 0.945 | 0.784 | |
LSSVM4 | 0.077 | 1077.685 | 0.969 | 0.889 | 0.126 | 1151.492 | 0.959 | 0.836 | |
GMDH4 | 0.080 | 1120.458 | 0.967 | 0.880 | 0.089 | 816.011 | 0.979 | 0.918 | |
MLP4 | 0.075 | 1051.216 | 0.971 | 0.895 | 0.118 | 1077.687 | 0.961 | 0.856 | |
MLP-GWO4 | 0.068 | 956.988 | 0.977 | 0.913 | 0.092 | 839.345 | 0.977 | 0.913 | |
MLR5 | 0.110 | 1541.353 | 0.927 | 0.773 | 0.147 | 1338.466 | 0.944 | 0.779 | |
LSSVM5 | 0.075 | 1058.106 | 0.971 | 0.893 | 0.133 | 1214.064 | 0.953 | 0.818 | |
GMDH5 | 0.077 | 1087.333 | 0.969 | 0.887 | 0.097 | 887.575 | 0.976 | 0.903 | |
MLP5 | 0.078 | 1096.451 | 0.966 | 0.885 | 0.118 | 1078.002 | 0.958 | 0.856 | |
MLP-GWO5 | 0.071 | 996.632 | 0.974 | 0.905 | 0.116 | 1059.867 | 0.963 | 0.861 | |
MLR6 | 0.107 | 1501.507 | 0.932 | 0.785 | 0.103 | 937.472 | 0.971 | 0.891 | |
LSSVM6 | 0.088 | 1236.120 | 0.958 | 0.854 | 0.106 | 972.237 | 0.972 | 0.883 | |
GMDH6 | 0.080 | 1119.229 | 0.966 | 0.880 | 0.091 | 829.099 | 0.978 | 0.915 | |
MLP6 | 0.083 | 1171.790 | 0.962 | 0.869 | 0.096 | 881.555 | 0.975 | 0.904 | |
MLP-GWO6 | 0.086 | 1204.090 | 0.959 | 0.862 | 0.083 | 754.711 | 0.980 | 0.930 | |
Southern Slope | MLR1 | 0.148 | 1999.178 | 0.876 | 0.637 | 0.147 | 1885.137 | 0.882 | 0.646 |
LSSVM1 | 0.124 | 1678.581 | 0.921 | 0.744 | 0.109 | 1392.661 | 0.941 | 0.807 | |
GMDH1 | 0.129 | 1748.936 | 0.923 | 0.722 | 0.104 | 1328.284 | 0.950 | 0.824 | |
MLP1 | 0.128 | 1726.925 | 0.923 | 0.729 | 0.111 | 1429.751 | 0.943 | 0.797 | |
MLP-GWO1 | 0.124 | 1679.358 | 0.927 | 0.744 | 0.105 | 1351.662 | 0.949 | 0.818 | |
MLR2 | 0.146 | 1975.748 | 0.882 | 0.645 | 0.145 | 1861.597 | 0.879 | 0.655 | |
LSSVM2 | 0.125 | 1688.168 | 0.919 | 0.741 | 0.116 | 1486.640 | 0.923 | 0.780 | |
GMDH2 | 0.128 | 1726.927 | 0.921 | 0.729 | 0.103 | 1321.075 | 0.946 | 0.826 | |
MLP2 | 0.126 | 1709.780 | 0.923 | 0.734 | 0.102 | 1311.089 | 0.943 | 0.829 | |
MLP-GWO2 | 0.126 | 1709.434 | 0.913 | 0.734 | 0.098 | 1261.877 | 0.953 | 0.842 | |
MLR3 | 0.146 | 1974.002 | 0.890 | 0.646 | 0.121 | 1557.307 | 0.917 | 0.759 | |
LSSVM3 | 0.110 | 1484.501 | 0.941 | 0.800 | 0.130 | 1661.526 | 0.913 | 0.725 | |
GMDH3 | 0.112 | 1512.714 | 0.937 | 0.792 | 0.110 | 1406.948 | 0.935 | 0.803 | |
MLP3 | 0.116 | 1574.361 | 0.933 | 0.775 | 0.114 | 1460.509 | 0.940 | 0.788 | |
MLP-GWO3 | 0.118 | 1595.235 | 0.939 | 0.769 | 0.107 | 1377.436 | 0.945 | 0.811 | |
MLR4 | 0.146 | 1982.769 | 0.889 | 0.643 | 0.123 | 1581.594 | 0.914 | 0.751 | |
LSSVM4 | 0.102 | 1379.232 | 0.950 | 0.827 | 0.125 | 1607.478 | 0.916 | 0.743 | |
GMDH4 | 0.095 | 1286.933 | 0.960 | 0.849 | 0.105 | 1341.722 | 0.947 | 0.821 | |
MLP4 | 0.103 | 1393.533 | 0.952 | 0.823 | 0.111 | 1422.194 | 0.948 | 0.799 | |
MLP-GWO4 | 0.105 | 1414.971 | 0.949 | 0.818 | 0.102 | 1302.612 | 0.953 | 0.831 | |
MLR5 | 0.147 | 1987.693 | 0.888 | 0.641 | 0.129 | 1649.801 | 0.905 | 0.729 | |
LSSVM5 | 0.100 | 1358.052 | 0.952 | 0.832 | 0.131 | 1676.468 | 0.916 | 0.720 | |
GMDH5 | 0.101 | 1369.514 | 0.950 | 0.830 | 0.114 | 1462.780 | 0.930 | 0.787 | |
MLP5 | 0.117 | 1587.929 | 0.923 | 0.771 | 0.112 | 1442.699 | 0.932 | 0.793 | |
MLP-GWO5 | 0.120 | 1629.483 | 0.924 | 0.759 | 0.107 | 1368.283 | 0.939 | 0.814 | |
MLR6 | 0.146 | 1978.638 | 0.889 | 0.644 | 0.127 | 1634.376 | 0.901 | 0.734 | |
LSSVM6 | 0.108 | 1468.020 | 0.941 | 0.804 | 0.134 | 1719.101 | 0.882 | 0.706 | |
GMDH6 | 0.094 | 1266.889 | 0.960 | 0.854 | 0.087 | 1111.549 | 0.965 | 0.877 | |
MLP6 | 0.113 | 1535.174 | 0.940 | 0.786 | 0.122 | 1558.616 | 0.910 | 0.758 | |
MLP-GWO6 | 0.109 | 1472.911 | 0.941 | 0.803 | 0.115 | 1477.708 | 0.922 | 0.783 |
Zone | Inputs | Models | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSSVM | GMDH | MLP | MLP-GWO | ||||||||||
γ | σ2 | Number of Neurons in Layers | Number of HIDDEN layers | Number of Neurons | Transfer Function (Input to Hidden Layer) | Transfer Function (Hidden Layer to Output) | Quantities and Values | ||||||
L1 * | L2 | L3 | L4 | L5 | |||||||||
Northern slope | Scenario 1 | 19.4 | 7.9 | 1 | - | - | - | - | 1 | 3 | Log-sigmoid | Linear | Maximum Number of Iterations = 500 Number of agents = 30 Best search agent = 0.2–1.4 |
Scenario 2 | 109.5 | 1.3 | 1 | - | - | - | - | 1 | 1 | Log-sigmoid | Linear | ||
Scenario 3 | 99.2 | 3.0 | 3 | 3 | 3 | 3 | 1 | 1 | 3 | Log-sigmoid | Linear | ||
Scenario 4 | 234.7 | 9.8 | 6 | 15 | 35 | 1 | - | 1 | 13 | Log-sigmoid | Linear | ||
Scenario 5 | 905.0 | 22.1 | 15 | 15 | 15 | 1 | - | 1 | 15 | Log-sigmoid | Linear | ||
Scenario 6 | 602.8 | 208.9 | 15 | 15 | 15 | 1 | - | 1 | 23 | Log-sigmoid | Linear | ||
Southern slope | Scenario 1 | 38.6 | 6.5 | 1 | - | - | - | - | 1 | 8 | Log-sigmoid | Linear | |
Scenario 2 | 117.1 | 35.8 | 1 | - | - | - | - | 1 | 17 | Log-sigmoid | Linear | ||
Scenario 3 | 96.3 | 3.5 | 3 | 3 | 3 | 3 | 1 | 1 | 10 | Log-sigmoid | Linear | ||
Scenario 4 | 198.7 | 7.1 | 6 | 15 | 35 | 35 | 1 | 1 | 12 | Log-sigmoid | Linear | ||
Scenario 5 | 613.7 | 15.3 | 10 | 35 | 35 | 35 | 1 | 1 | 6 | Log-sigmoid | Linear | ||
Scenario 6 | 110.8 | 29.9 | 15 | 35 | 35 | 35 | 1 | 1 | 5 | Log-sigmoid | Linear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghelpour, P.; Guan, Y.; Bahrami-Pichaghchi, H.; Mohammadi, B.; Kisi, O.; Zhang, D. Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area. Remote Sens. 2020, 12, 3437. https://doi.org/10.3390/rs12203437
Aghelpour P, Guan Y, Bahrami-Pichaghchi H, Mohammadi B, Kisi O, Zhang D. Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area. Remote Sensing. 2020; 12(20):3437. https://doi.org/10.3390/rs12203437
Chicago/Turabian StyleAghelpour, Pouya, Yiqing Guan, Hadigheh Bahrami-Pichaghchi, Babak Mohammadi, Ozgur Kisi, and Danrong Zhang. 2020. "Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area" Remote Sensing 12, no. 20: 3437. https://doi.org/10.3390/rs12203437
APA StyleAghelpour, P., Guan, Y., Bahrami-Pichaghchi, H., Mohammadi, B., Kisi, O., & Zhang, D. (2020). Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area. Remote Sensing, 12(20), 3437. https://doi.org/10.3390/rs12203437