Analysis and Modeling of the Complex Dielectric Constant of Bound Water with Application in Soil Microwave Remote Sensing
Abstract
:1. Introduction
2. The Electrical Double-Layer Model: Introduction and Application
3. Bound Water Model and Model Parameters
3.1. Content of Strongly Bound Water
3.2. Dielectric Constant of Strongly Bound Water
3.3. Content of Weakly Bound Water
3.4. Dielectric Constant of Weakly Bound Water
3.5. Dielectric Constant of Bound Water
4. Soil Dielectric Mixing Model
5. Data and Results
6. Discussion
6.1. Change of Bound Water Dielectric Constant with Soil Moisture
6.2. Change of Bound Water Dielectric Constant with Soil Temperature
6.3. Comparison of Soil Dielectric Mixing Models
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fung, A.K. Microwave Scattering and Emission Models and Their Applications; Artech House: Norwood, MA, USA, 1994. [Google Scholar]
- Jackson, T.J., III. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process. 1993, 7, 139–152. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Waldteufel, P.; Chanzy, A.; Calvet, J.-C.; Kerr, Y. Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission). Remote Sens. Environ. 2000, 73, 270–282. [Google Scholar] [CrossRef]
- Jones, S.B.; Friedman, S.P. Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resour. Res. 2000, 36, 2821–2833. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Mironov, V.L.; Dobson, M.C.; Kaupp, V.H.; Komarov, S.A.; Kleshchenko, V.N. Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Saarenketo, T. Electrical properties of water in clay and silty soils. J. Appl. Geophys. 1998, 40, 73–88. [Google Scholar] [CrossRef]
- Ishizaki, T.; Maruyama, M.; Furukawa, Y.; Dash, J.G. Premelting of ice in porous silica glass. J. Cryst. Growth 1996, 163, 455–460. [Google Scholar] [CrossRef]
- Keller, C.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon Press: Oxford, UK, 1966; pp. 519–521. [Google Scholar]
- Wang, J.R.; Schmugge, T.J. An Empirical-Model for the Complex Dielectric Permittivity of Soils as a Function of Water-Content. IEEE Trans. Geosci. Remote Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Boyarskii, D.A.; Tikhonov, V.V.; Komarova, N.Y. Model of Dielectric Constant of Bound Water in Soil for Applications of Microwave Remote Sensing. Prog. Electromagn. Res. 2002, 35, 251–269. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.L.; Fomin, S.V. Temperature and Mineralogy Dependable Model for Microwave Dielectric Spectra of Moist Soils. PIERS Online 2009, 5, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.; Kerr, Y.; Wigneron, J.-P.; Kosolapova, L.; Demontoux, F. Temperature- and Texture-Dependent Dielectric Model for Moist Soils at 1.4 GHz. IEEE Geosci. Remote Sens. Lett. 2012, 10, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Q.; Li, H.; Du, Y.; Cao, B. An Improved Microwave Semiempirical Model for the Dielectric Behavior of Moist Soils. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6630–6644. [Google Scholar] [CrossRef]
- Park, C.-H.; Behrendt, A.; LeDrew, E.; Wulfmeyer, V. New Approach for Calculating the Effective Dielectric Constant of the Moist Soil for Microwaves. Remote Sens. 2017, 9, 732. [Google Scholar] [CrossRef] [Green Version]
- Babcock, K.L. Theory of the chemical properties of soil colloidal systems at equilibrium. Hilgardia 1963, 34, 417–542. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.C.D. Chemistry of Clays and Clay Minerals; Longman Sciences and Technology; Cambridge University Press: London, UK, 1987. [Google Scholar]
- Van Olphen, H. An Introduction to Clay Colloid Chemistry. Soil Sci. 1964, 97, 290. [Google Scholar] [CrossRef]
- Van Olphen, H.; Hsu, P.H. An Introduction to Clay Colloid Chemistry. Soil Sci. 1978, 126, 59. [Google Scholar] [CrossRef]
- Shang, J.; Lo, K.; Quigley, R. Quantitative determination of potential distribution in Stern–Gouy double-layer model. Can. Geotech. J. 1994, 31, 624–636. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.-K. Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 25–34. [Google Scholar] [CrossRef]
- Adamson, A.W. Physical Chemistry of Surfaces, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1976; pp. 698–704. [Google Scholar]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of the stability of lyophobic colloids. J. Colloid Sci. 1955, 10, 224–225. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.; Sridharan, A.; Schanz, T. Swelling pressures of compacted bentonites from diffuse double layer theory. Can. Geotech. J. 2004, 41, 437–450. [Google Scholar] [CrossRef]
- Smith, C.W.; Hadas, A.; Dan, J.; Koyumdjisky, H. Shrinkage and Atterberg limits in relation to other properties of principal soil types in Israel. Geoderma 1985, 35, 47–65. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Kaya, A. Method dependency of relationships between specific surface area and soil physicochemical properties. Appl. Clay Sci. 2010, 50, 182–190. [Google Scholar] [CrossRef]
- Sridharan, A.; Satyamurty, P.V. Potential-Distance Relationships of Clay-Water Systems Considering the Stern Theory. Clays Clay Miner. 1996, 44, 479–484. [Google Scholar] [CrossRef]
- Campbell, J.E. Dielectric Properties and Influence of Conductivity in Soils at One to Fifty Megahertz. Soil Sci. Soc. Am. J. 1990, 54, 332–341. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, Volume 3—From Theory to Applications; Artech House Inc.: Norwood, MA, USA, 1986. [Google Scholar]
- Dash, J.G. Thermomolecular Pressure in Surface Melting: Motivation for Frost Heave. Science 1989, 246, 1591–1593. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, F.; Bowe, S.; Van As, H.; Schaumann, G.E. Evaluation of1H NMR relaxometry for the assessment of pore-size distribution in soil samples. Eur. J. Soil Sci. 2009, 60, 1052–1064. [Google Scholar] [CrossRef]
- Razumova, L.A. Basic principles governing the organization of soil moisture observations. Int. Assoc. Hydrol. Sci. Publ. 1965, 68, 491–501. [Google Scholar]
- Tian, H.; Wei, C. A NMR-based testing and analysis of adsorbed water content. Sci. Sin. Technol. 2014, 44, 295–305. [Google Scholar] [CrossRef]
- Anderson, D.M.; Tice, A.R. The unfrozen interfacial phase in frozen soil water systems. In Physical Aspects of Soil Water and Salts in Ecosystems; Springer: Berlin/Heidelberg, Germany, 1973; pp. 107–124. [Google Scholar]
- Stogryn, A. Equations for Calculating the Dielectric Constant of Saline Water (Correspondence). IEEE Trans. Microw. Theory Tech. 1971, 19, 733–736. [Google Scholar] [CrossRef]
- Mendelson, K.S.; Cohen, M.H. The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics 1982, 47, 257–263. [Google Scholar] [CrossRef]
- Kenyon, W.E. Texture effects on megahertz dielectric properties of calcite rock samples. J. Appl. Phys. 1984, 55, 3153. [Google Scholar] [CrossRef]
- Sen, P.N. Relation of certain geometrical features to the dielectric anomaly of rocks. Geophysics 1981, 46, 1714–1720. [Google Scholar] [CrossRef]
- Tyč, S.; Schwartz, L.M.; Sen, P.N.; Wong, P.Z. Geometrical models for the high-frequency dielectric properties of brine saturated sandstones. J. Appl. Phys. 1988, 64, 2575–2582. [Google Scholar] [CrossRef]
- Birchak, J.R.; Gardner, C.G.; Hipp, J.E.; Victor, J.M. High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Bruggeman, D. Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substance. Annalen der Physik 1935, 24, 636–664. [Google Scholar] [CrossRef]
- Friedman, S.P. A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media. Water Resour. Res. 1998, 34, 2949–2961. [Google Scholar] [CrossRef]
- He, H.L.; Dyck, M. Application of Multiphase Dielectric Mixing Models for Understanding the Effective Dielectric Permittivity of Frozen Soils. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Garnett, J.C.M.; Larmor, J. Colours in metal glasses and in metallic films. Proc. R. Soc. Lond. 1904, 73, 443–445. [Google Scholar] [CrossRef] [Green Version]
- Sihvola, A. Electromagnetic Mixing Formulas and Applications; Institution of Engineering and Technology (IET): London, UK, 1999. [Google Scholar]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Zakri, T.; Laurent, J.P.; Vauclin, M. Theoretical evidence for ’Lichtenecker’s mixture formulae’ based on the effective medium theory. J. Phys. D Appl. Phys. 1998, 31, 1589–1594. [Google Scholar] [CrossRef]
- Ersahin, S.; Gunal, H.; Kutlu, T.; Yetgin, B.; Coban, S. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma 2006, 136, 588–597. [Google Scholar] [CrossRef]
- Or, D.; Wraith, J.M. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model. Water Resour. Res. 1999, 35, 371–383. [Google Scholar] [CrossRef]
- Ebtehaj, A.M.; Bras, R.L. A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in L-band. Remote Sens. Environ. 2019, 233, 111346. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 1—Microwave Remote Sensing Fundamentals and Radiometry; Addison-Wesley: Boston, MA, USA, 1981. [Google Scholar]
Soil Designation | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
Textural Class | Sandy Loam | Loam | Silt Loam | Silt Loam | Silty Clay |
% Sand | 51.51 | 41.96 | 30.63 | 17.16 | 5.02 |
% Silt | 35.06 | 49.51 | 55.89 | 63.84 | 47.60 |
% Clay | 13.43 | 8.53 | 13.48 | 19.00 | 47.38 |
Specific Density (g·cm−1) | 2.66 | 2.7 | 2.59 | 2.66 | 2.56 |
Specific Charge Density σ/(C·cm−2) | 1.520 × 10−5 | 1.493 × 10−5 | 1.663 × 10−5 | 1.658 × 10−5 | 1.329 × 10−5 |
Ion Concentration of Soil Solution n0/(mol·L−3) | 0.535 × 10−2 | 0.396 × 10−2 | 0.540 × 10−2 | 0.577 × 10−2 | 0.469 × 10−2 |
Specific Surface AS/(m2·g−1) | 52 | 49 | 66 | 119 | 252 |
Parameter β at 23 °C (dimensionless) | 0.910 | 0.922 | 0.909 | 0.906 | 0.915 |
Average of diffuse-layer thickness between 0 and 40 °C d/(Å) | 39 | 45 | 38.5 | 37.5 | 41.5 |
Average ion concentration of first 8 layers for bound water in the diffuse-layer (mol/L) | 0.361 | 0.365 | 0.361 | 0.360 | 0.363 |
Soil Designation | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
Textural Class | Sandy Loam | Loam | Silt Loam | Silt Loam | Silty Clay |
Maximum bound water content (Vmaxb,%) | 8.46 | 8.16 | 9.21 | 11.75 | 16.60 |
Maximum strongly bound water content (Vmaxsb,%) | 2.69 | 2.54 | 3.23 | 5.28 | 10.29 |
Complex dielectric constant of bound water at 1.4 GHz (W = 20%, T = 23 °C) | 51.7 + 31.6j | 52.2 + 32.0j | 49.6 + 30.2j | 43.4 + 25.7j | 32.4 + 17.9j |
Complex dielectric constant of bound water at 18 GHz (W = 20%, T = 23 °C) | 29.9 + 25.4j | 30.2 + 25.6j | 28.9 + 24.2j | 25.7 + 20.6j | 20.2 + 14.4j |
Models | 1.4 GHz | 10 GHz | 18 GHz | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ε’ | Soil No. | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
Mironov 2012 | 0.085 | 0.150 | 0.158 | 0.254 | 0.319 | |||||||||||
Mironov 2009 | 0.098 | 0.175 | 0.187 | 0.295 | 0.170 | 0.188 | 0.081 | 0.084 | 0.083 | 0.241 | 0.193 | 0.146 | 0.164 | 0.170 | 0.312 | |
Wang | 0.068 | 0.120 | 0.096 | 0.078 | 0.131 | 0.088 | 0.076 | 0.080 | 0.101 | 0.225 | 0.087 | 0.069 | 0.073 | 0.110 | 0.200 | |
Liu | 0.154 | 0.201 | 0.160 | 0.162 | 0.167 | 0.134 | 0.153 | 0.143 | 0.115 | 0.118 | 0.131 | 0.151 | 0.134 | 0.117 | 0.097 | |
Dobson | 0.202 | 0.121 | 0.042 | 0.050 | 0.120 | 0.147 | 0.051 | 0.020 | 0.076 | 0.019 | 0.118 | 0.040 | 0.033 | 0.087 | 0.027 | |
This paper | 0.083 | 0.054 | 0.069 | 0.075 | 0.092 | 0.014 | 0.013 | 0.020 | 0.043 | 0.095 | 0.015 | 0.021 | 0.019 | 0.034 | 0.063 | |
Average ARMSE | 0.115 | 0.137 | 0.119 | 0.152 | 0.167 | 0.114 | 0.075 | 0.069 | 0.084 | 0.140 | 0.109 | 0.085 | 0.085 | 0.104 | 0.140 | |
ε” | Mironov 2012 | 0.621 | 0.614 | 0.166 | 0.199 | 0.554 | ||||||||||
Mironov 2009 | 0.681 | 0.626 | 0.687 | 0.728 | 0.868 | 0.130 | 0.252 | 0.228 | 0.270 | 0.087 | 0.066 | 0.033 | 0.037 | 0.213 | 0.338 | |
Wang | 0.291 | 0.345 | 0.100 | 0.229 | 0.207 | 0.192 | 0.210 | 0.137 | 0.147 | 0.298 | 0.166 | 0.171 | 0.133 | 0.130 | 0.308 | |
Liu | 1.104 | 1.106 | 0.164 | 0.138 | 0.435 | 0.230 | 0.264 | 0.188 | 0.133 | 0.076 | 0.184 | 0.242 | 0.188 | 0.144 | 0.081 | |
Dobson | 0.546 | 0.627 | 0.049 | 0.188 | 0.376 | 0.111 | 0.220 | 0.265 | 0.344 | 0.263 | 0.142 | 0.238 | 0.300 | 0.330 | 0.291 | |
This paper | 0.197 | 0.184 | 0.068 | 0.230 | 0.105 | 0.050 | 0.062 | 0.032 | 0.048 | 0.192 | 0.026 | 0.026 | 0.019 | 0.063 | 0.205 | |
Average ARMSE | 0.467 | 0.479 | 0.206 | 0.285 | 0.424 | 0.143 | 0.202 | 0.170 | 0.188 | 0.183 | 0.117 | 0.142 | 0.135 | 0.176 | 0.245 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Yang, W.; Gao, X.; Li, Z. Analysis and Modeling of the Complex Dielectric Constant of Bound Water with Application in Soil Microwave Remote Sensing. Remote Sens. 2020, 12, 3544. https://doi.org/10.3390/rs12213544
Jin X, Yang W, Gao X, Li Z. Analysis and Modeling of the Complex Dielectric Constant of Bound Water with Application in Soil Microwave Remote Sensing. Remote Sensing. 2020; 12(21):3544. https://doi.org/10.3390/rs12213544
Chicago/Turabian StyleJin, Xiao, Wen Yang, Xiaoqing Gao, and Zhenchao Li. 2020. "Analysis and Modeling of the Complex Dielectric Constant of Bound Water with Application in Soil Microwave Remote Sensing" Remote Sensing 12, no. 21: 3544. https://doi.org/10.3390/rs12213544
APA StyleJin, X., Yang, W., Gao, X., & Li, Z. (2020). Analysis and Modeling of the Complex Dielectric Constant of Bound Water with Application in Soil Microwave Remote Sensing. Remote Sensing, 12(21), 3544. https://doi.org/10.3390/rs12213544