Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Principles of LS + AR Combination Model
2.2. New Strategy of Ultra-Rapid UT1-UTC Determination for Ultra-Rapid Orbit
- Method 1 (A)—The UT1-UTC data sequence is predicted for 2 days, and then the second-order Lagrange interpolation algorithm is used to obtain the observation and prediction parts of the ultra-rapid UT1-UTC parameter, which is updated once a day.
- Method 2 (B)—The UT1-UTC data sequence is predicted for one day, and then the predicted value of this step is added to the original sequence again for a 1-day prediction. Finally, the second-order Lagrange interpolation algorithm is used to obtain the observation and prediction parts of the ultra-rapid UT1-UTC parameter, which is updated once a day.
3. Results
4. Discussion
4.1. Discussion of Ultra-Rapid Orbit Determination
- (1)
- Obtain the simulated true satellite orbit state—the initial state of satellite orbit and the related state transition matrix are fitted by the final precise orbit and ERP products.
- (2)
- Obtain the simulated true satellite orbit coordinates in J2000.0—the coordinates of the satellite in ultra-rapid orbit in the celestial reference frame are calculated by integrating the satellite state parameters and related state transition matrix obtained in the first step and the final precise ERP products.
- (3)
- Obtain the satellite orbit coordinates in IGS14 with different ultra-rapid ERPs [36]—the coordinates of the satellite in ultra-rapid orbit obtained in the second step and the ultra-rapid ERPs (IGG ERP and IGU ERP, where IGG ERP represents ultra-rapid UT1-UTC and is generated by the above new strategy; other parameters in ultra-rapid ERP come from the IGS ultra-rapid product, and IGU ERP represents ultra-rapid ERP and is provided by the IGS ultra-rapid product) obtained in the above part are used to transform the coordinates of the satellite in ultra-rapid orbit in the terrestrial frame.
- (4)
- Comparative analysis—the 6-hour prediction for each arc of satellite in ultra-rapid orbit obtained in the third step is compared with the final precise orbit products, and the residual of each satellite and its maximum (Max), average (Ave), and RMS (Root Mean Square) are calculated.
4.2. Discussion on Ultra-Rapid LOD Determination
- Method 1 (A)—LOD data sequences are predicted for one day, which is updated every 6 h.
- Method 2 (B)—LOD data sequences are resampled by a second-order Lagrange interpolation algorithm, and then the data sequences after resampling are predicted for 1 day and updated every 6 h.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dai, Z.; Zhao, Q.; Lv, Y.; Song, J.; Zhou, J.; Yang, S.; Gu, M. The Wide- and Local-Area Combined GNSS Real-Time Precise Positioning Service System and Products. In Proceedings of the China Satellite Navigation Conference (CSNC) 2017, Shanghai, China, 23–25 May 2017; Volume 3, pp. 409–428. [Google Scholar]
- Hu, J.; Zhang, X.; Li, P.; Ma, F.; Pan, L. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solut. 2019, 24, 15. [Google Scholar] [CrossRef]
- Jin, S.; Su, K. PPP models and performances from single- to quad-frequency BDS observations. Satell. Navig. 2020, 1, 16. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Ge, M.; Schuh, H. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning. J. Geod. 2019, 93, 45–64. [Google Scholar] [CrossRef]
- Ye, F.; Yuan, Y.; Tan, B.; Deng, Z.; Ou, J. The Preliminary Results for Five-System Ultra-Rapid Precise Orbit Determination of the One-Step Method Based on the Double-Difference Observation Model. Remote Sens. 2018, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, K.; Wu, S.; Zou, Y.; Hu, C. A method for identification of optimal minimum number of multi-GNSS tracking stations for ultra-rapid orbit and ERP determination. Adv. Space Res. 2019, 63, 2877–2888. [Google Scholar] [CrossRef]
- Dousa, J. Development of the GLONASS Ultra-Rapid Orbit Determination at Geodetic Observatory Pecný. In Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August—4 September 2009; pp. 1029–1035. [Google Scholar]
- Ye, F.; Yuan, Y.; Zhang, B. Impact analysis of arc length in multi-GNSS ultra-rapid orbit determination based on the one-step method. Meas. Sci. Technol. 2020, 31, 055012. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions. IERS Tech. Note 2010, 36, 179. [Google Scholar]
- Lutz, S.; Beutler, G.; Schaer, S.; Dach, R.; Jäggi, A. CODE’s new ultra-rapid orbit and ERP products for the IGS. GPS Solut. 2016, 20, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Wei, E.; Jin, S. Earth Rotation Parameter Estimation from GNSS and Its Impact on Aircraft Orbit Determination. In Proceedings of the China Satellite Navigation Conference (CSNC) 2014, Nanjing, China, 21–23 May 2014; pp. 105–114. [Google Scholar]
- Jia, S.; Xu, T.-H.; Sun, Z.-Z.; Li, J.-J. Middle and long-term prediction of UT1-UTC based on combination of Gray Model and Autoregressive Integrated Moving Average. Adv. Space Res. 2017, 59, 888–894. [Google Scholar] [CrossRef]
- Wang, Q.; Chao, H.; Xu, T.; Chang, G.; Moraleda, A.H. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction. Adv. Space Res. 2017, 60, 2855–2870. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y. EOP prediction using least square fitting and autoregressive filter over optimized data intervals. Adv. Space Res. 2015, 56, 2248–2253. [Google Scholar] [CrossRef]
- Schuh, H.; Ulrich, M.; Egger, D.; Müller, J.; Schwegmann, W. Prediction of Earth orientation parameters by artificial neural networks. J. Geod. 2002, 76, 247–258. [Google Scholar] [CrossRef]
- Wu, F.; Chang, G.; Deng, K. One-step method for predicting LOD parameters based on LS+AR model. J. Spat. Sci. 2019, 1–12. [Google Scholar] [CrossRef]
- Modiri, S.; Belda, S.; Hoseini, M.; Heinkelmann, R.; Ferrándiz, J.M.; Schuh, H. A new hybrid method to improve the ultra-short-term prediction of LOD. J. Geod. 2020, 94, 23. [Google Scholar] [CrossRef] [Green Version]
- Zotov, L.; Xu, X.; Zhou, Y.; Skorobogatov, A. Combined SAI-SHAO prediction of Earth Orientation Parameters since 2012 till 2017. Geod. Geodyn. 2018, 9, 485–490. [Google Scholar] [CrossRef]
- Malkin, Z. Employing Combination Procedures to Short-Time Eop Prediction. Artif. Satell. 2010, 45, 87–93. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Q.; Wang, Z.; Mao, Y. A Method for Improving the Short-Term Prediction Model for ERP Based on Long-Term Observations. In Proceedings of the China Satellite Navigation Conference (CSNC) 2019, Beijing, China, 22–25 May 2019; pp. 24–38. [Google Scholar]
- Kalarus, M.; Schuh, H.; Kosek, W.; Akyilmaz, O.; Bizouard, C.; Gambis, D.; Gross, R.; Jovanović, B.; Kumakshev, S.; Kutterer, H.; et al. Achievements of the Earth orientation parameters prediction comparison campaign. J. Geod. 2010, 84, 587–596. [Google Scholar] [CrossRef]
- Shumate, N.A.; Luzum, B.J.; Kosek, W. Earth Orientation Parameters Combination of Prediction Pilot Project. In Proceedings of the Agu Fall Meeting 2013, San Fransisco, CA, USA, 9–13 December 2013; p. G13A-0928. [Google Scholar]
- Kosek, W. Future Improvements in EOP Prediction. In Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August—4 September 2009; pp. 513–520. [Google Scholar]
- Johnson, T. IERS Annual Report 2005; IERS Rapid Service/Prediction Centre: Washington, DC, USA, 2005; pp. 57–66. [Google Scholar]
- Dick, W.R.; Thaller, D. IERS Annual Report 2018; IERS Rapid Service/Prediction Centre: Washington, DC, USA, 2020; pp. 102–124. [Google Scholar]
- Zajdel, R.; Sośnica, K.; Bury, G.; Dach, R.; Prange, L. System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut. 2020, 24, 74. [Google Scholar] [CrossRef]
- Niedzielski, T.; Kosek, W. Prediction of UT1–UTC, LOD and AAM χ 3 by combination of least-squares and multivariate stochastic methods. J. Geod. 2008, 82, 83–92. [Google Scholar] [CrossRef]
- Niedzielski, T.; Kosek, W. Prediction Analysis of UT1-UTC Time Series by Combination of the Least-Squares and Multivariate Autoregressive Method. In Proceedings of the VII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, Italy, 6–10 June 2009; pp. 153–157. [Google Scholar]
- Xu, X.Q.; Zhou, Y.H.; Liao, X.H. Short-term earth orientation parameters predictions by combination of the least-squares, AR model and Kalman filter. J. Geodyn. 2012, 62, 83–86. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time series analysis: Forecasting and control. J. Oper. Res. Soc. 2015, 22, 199–201. [Google Scholar]
- Akaike, H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 1969, 21, 243–247. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1974; pp. 215–222. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Hofmann, F.; Biskupek, L.; Müller, J. Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model. J. Geod. 2018, 92, 975–987. [Google Scholar] [CrossRef]
- Rothacher, M.; Beutler, G.; Herring, T.A.; Weber, R. Estimation of nutation using the Global Positioning System. J. Geophys. Res. Solid Earth 1999, 104, 4835. [Google Scholar] [CrossRef]
- Bizouard, C.; Lambert, S.; Gattano, C.; Becker, O.; Richard, J.-Y. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geod. 2019, 93, 621–633. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Ray, J.; Garayt, B. The IGS contribution to ITRF2014. J. Geod. 2016, 90, 611–630. [Google Scholar] [CrossRef]
- Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Sośnica, K.; et al. Laser geodetic satellites: A high-accuracy scientific tool. J. Geod. 2019, 93, 2181–2194. [Google Scholar] [CrossRef]
- Štěpánek, P.; Hugentobler, U.; Buday, M.; Filler, V. Estimation of the Length of Day (LOD) from DORIS observations. Adv. Space Res. 2018, 62, 370–382. [Google Scholar] [CrossRef]
Parameter | Cases | MAE (µs) | Relative Gain (%) | ||
---|---|---|---|---|---|
IGU | iGMAS | ||||
Ultra-rapid UT1-UTC | B | Observed part | 51 | 42.70 | 42.05 |
Predicted part | 68 | 29.17 | 37.61 | ||
IGU | Observed part | 89 | - | - | |
Predicted part | 96 | - | - | ||
iGMAS | Observed part | 88 | 1.12 | - | |
Predicted part | 109 | −13.54 | - |
Parameter | Strategies | MAE (µs) | Relative Gain (%) | |
---|---|---|---|---|
IGU | iGMAS | |||
the prediction part of ultra-rapid LOD | A | 19 | 20.83 | 64.81 |
IGU | 24 | - | - | |
iGMAS | 54 | −125.00 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, F.; Yuan, Y.; Deng, Z. Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination. Remote Sens. 2020, 12, 3584. https://doi.org/10.3390/rs12213584
Ye F, Yuan Y, Deng Z. Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination. Remote Sensing. 2020; 12(21):3584. https://doi.org/10.3390/rs12213584
Chicago/Turabian StyleYe, Fei, Yunbin Yuan, and Zhiguo Deng. 2020. "Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination" Remote Sensing 12, no. 21: 3584. https://doi.org/10.3390/rs12213584
APA StyleYe, F., Yuan, Y., & Deng, Z. (2020). Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination. Remote Sensing, 12(21), 3584. https://doi.org/10.3390/rs12213584