Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Instrumentation
2.2. CHM15k-Nimbus Ceilometer
Retrieval of Ceilometer Backscattering Coefficient Profile
2.3. AERONET Sun Photometer
2.4. EARLINET Lidar
2.5. GAME Main Features and Input Parameters
3. Results
3.1. Comparison of the Aerosol Radiative Forcing Estimates with Previous Studies
3.2. Aerosols Radiative Forcing
3.2.1. AERONET AOD at 440 nm Temporal Evolution
3.2.2. Aerosol Radiative Forcing
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barragan, R.; Sicard, M.; Totems, J.; Léon, J.F.; Dulac, F.; Mallet, M.; Pelon, J.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; et al. Spatio-temporal monitoring by ground-based and air- and space-borne lidars of a moderate Saharan dust event affecting southern Europe in June 2013 in the framework of the ADRIMED/ChArMEx campaign. Air Qual. Atmos. Heal. 2017, 10, 261–285. [Google Scholar] [CrossRef]
- Sicard, M.; Bertolín, S.; Mallet, M.; Dubuisson, P.; Comerón, A. Estimation of mineral dust long-wave radiative forcing: Sensitivity study to particle properties and application to real cases in the region of Barcelona. Atmos. Chem. Phys. 2004, 14, 9213–9231. [Google Scholar] [CrossRef] [Green Version]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Key, J.; Schweiger, A.J. Tools for atmospheric radiative transfer: Streamer and FluxNet. Comp. Geosci. 1998, 24, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Berk, A. MODTRAN5: 2006 update. In Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery XII; International Society for Optics and Photonics: Orlando, FL, USA, 2006; Volume 6233, p. 62331F. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Dubuisson, P.; Dessailly, D.; Vesperini, M.; Frouin, R. Water vapor retrieval over ocean using near-infrared radiometry. J. Geophys. Res. 2004, 109, D19106. [Google Scholar] [CrossRef]
- Dubuisson, P.; Roger, J.; Mallet, M.; Dubovik, O. A code to compute the direct solar radiative forcing: Application to anthropogenic aerosols during the Escompte Experiment. In Proceedings of the International Radiation Symposium (IRS 2004) on Current Problems in Atmospheric Radiation, Busan, Korea, 23–28 August 2004; pp. 127–130. [Google Scholar]
- Granados-Muñoz, M.J.; Sicard, M.; Román, R.; Benavent-Oltra, J.A.; Barragán, R.; Brogniez, G.; Denjean, C.; Mallet, M.; Formenti, P.; Torres, B.; et al. Impact of mineral dust on shortwave and longwave radiation: Evaluation of different vertically resolved parameterizations in 1-D radiative transfer computations. Atmos. Chem. Phys. 2019, 19, 523–542. [Google Scholar] [CrossRef] [Green Version]
- Granados-Muñoz, M.J.; Sicard, M.; Papagiannopoulos, N.; Barragan, R.; Bravo-Aranda, J.A.; Nicolae, D. Two-dimensional mineral dust radiative effect calculations from CALIPSO observations over Europe. Atmos. Chem. Phys. 2019, 19, 13157–13173. [Google Scholar] [CrossRef] [Green Version]
- Mallet, M.; Pont, V.; Liousse, C.; Roger, J.C.; Dubuisson, P. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001). Atmos. Environ. 2006, 40, 7696–7705. [Google Scholar] [CrossRef]
- Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; et al. Overview of the chemistry-aerosol Mediterranean experiment/aerosol direct radiative forcing on the Mediterranean climate (ChArMEx/ADRIMED) summer 2013 campaign. Atmos. Chem. Phys. 2016, 16, 455–504. [Google Scholar] [CrossRef] [Green Version]
- Perrone, M.R.; Tafuro, A.M.; Kinne, S. Dust layer effects on the atmospheric radiative budget and heating rate profiles. Atmos. Environ. 2012, 59, 344–354. [Google Scholar] [CrossRef]
- Sicard, M.; Mallet, M.; García-Vizcaíno, D.; Comerón, A.; Rocadenbosch, F.; Dubuisson, P.; Muñoz-Porcar, C. Intense dust and extremely fresh biomass burning in Barcelona, Spain: Characterization of their optical properties and estimation of their radiative forcing. Environ. Res. Lett. 2012, 7, 034016. [Google Scholar] [CrossRef] [Green Version]
- Romano, S.; Burlizzi, P.; Perrone, M.R. Experimental determination of short- and long-wave dust radiative effects in the central Mediterranean and comparison with model results. Atmos. Res. 2016, 171, 5–20. [Google Scholar] [CrossRef]
- Barragan, R.; Romano, S.; Sicard, M.; Burlizzi, P.; Perrone, M.R.; Comeron, A. Estimation of mineral dust direct radiative forcing at the EARLINET site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: Impact of radiative transfer model spectral resolutions. J. Geophys. Res. 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Meloni, D.; di Sarra, A.; Brogniez, G.; Denjean, C.; De Silvestri, L.; Di Iorio, T.; Formenti, P.; Gómez-Amo, J.L.; Gröbner, J.; Kouremeti, N.; et al. Determining the infrared radiative effects of Saharan dust: A radiative transfer modelling study based on vertically resolved measurements at Lampedusa. Atmos. Chem. Phys. 2018, 18, 4377–4401. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Lidar Remote Sensing for Industry and Environment Monitoring III; International Society for Optics and Photonics: San Diego, CA, USA, 2003; Volume 4893, pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.; Liu, Z.; Vaughan, M.; Thornhill, K.; Kittaka, C.; Ismail, S.; Hu, Y.; Chen, G.; Powell, K.; Winker, D.; et al. Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA. J. Geophys. Res. Atmos. 2010, 115, D24217. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y.; Zhao, Q. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys. 2009, 9, 4011–4021. [Google Scholar] [CrossRef]
- Lemaître, C.; Flamant, C.; Cuesta, J.; Raut, J.-C.; Chazette, P.; Formenti, P.; Pelon, J. Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos. Chem. Phys. 2010, 10, 8131–8150. [Google Scholar] [CrossRef] [Green Version]
- Bhawar, R.L.; Lee, W.-S.; Rahul, P.R.C. Aerosol types and radiative forcing estimates over East Asia. Atmos. Environ. 2016, 141, 532–541. [Google Scholar] [CrossRef]
- Oikawa, E.; Nakajima, T.; Inoue, T.; Winker, D. A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation. J. Geophys. Res. Atmos. 2013, 118, 3687–3708. [Google Scholar] [CrossRef]
- Oikawa, E.; Nakajima, T.; Winker, D. An evaluation of the shortwave direct aerosol radiative forcing using CALIOP and MODIS observations. J. Geophys. Res. Atmos. 2018, 123, 1211–1233. [Google Scholar] [CrossRef]
- Welton, E.J.; Campbell, J.R.; Spinhirne, J.D.; Scott, V.S. Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. In Lidar Remote Sensing for Industry and Environmental Monitoring; Singh, U.N., Itabe, T., Sugimoto, N., Eds.; International Society for Optics and Photonics: San Diego, CA, USA, 2001; Volume 4153, pp. 151–158. [Google Scholar]
- Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S. Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech. 2010, 3, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- IQAir. COVID-19 Air Quality Report; IQAir: Goldach, Switzerland, 2020; p. 15. Available online: https://www.iqair.com/blog/air-quality/report-impact-of-covid-19-on-global-air-quality-earth-day (accessed on 16 September 2020).
- Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática. Real Decreto 463/2020 de 14 de Marzo, por El que se Declara el Estado de Alarma para la Gestión de la Situación de Crisis Sanitaria Ocasionada por el COVID-19. 2020. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2020-3692 (accessed on 17 September 2020).
- Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática. Real Decreto-ley 10/2020, de 29 de Marzo, por El que se Regula un Permiso Retribuido Recuperable para las Personas Trabajadoras por Cuenta Ajena que no Presten Servicios Esenciales, con el Fin de Reducir la Movilidad de la Población en el Contexto de la Lucha Contra el COVID-19. 2020. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2020-4166 (accessed on 17 September 2020).
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2in the cities of Barcelona and Madrid. Sci. Total Environ. 2020, 741. [Google Scholar] [CrossRef]
- Tobias, A.; Carnerero, C.; Reche, C.; Massagué, J.; Viana, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726. [Google Scholar] [CrossRef]
- IPCC: Climate Change. The Physical Science Basis, Contribution of Working Group I to the UN IPCC’s Fifth Assessment Report; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Fernandez, A.J.; Sicard, M.; Costa, M.J.; Guerrero-Rascado, J.L.; Gómez-Amo, J.L.; Molero, F.; Barragan, R.; Basart, S.; Bortoli, D.; Bedoya-Velásquez, A.E.; et al. Extreme, wintertime Saharan dust intrusion in the Iberian Peninsula: Lidar monitoring and evaluation of dust forecast models during the February 2017 event. Atmos. Res. 2018, 228, 223–241. [Google Scholar] [CrossRef]
- Cazorla, A.; Casquero-Vera, J.A.; Román, R.; Guerrero-Rascado, J.L.; Toledano, C.; Cachorro, V.E.; Orza, J.A.; Cancillo, M.L.; Serrano, A.; Titos, G.; et al. Near-real-time processing of a ceilometer network assisted with sun-photometer data: Monitoring a dust outbreak over the Iberian Peninsula. Atmos. Chem. Phys. 2017, 17, 11861–11876. [Google Scholar] [CrossRef] [Green Version]
- Klett, J.D. Stable analytic inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Fernald, F.G.; Herman, B.M.; Reagan, J.A. Determination of aerosol height distributions by lidar. J. Appl. Meteorol. 1972, 11, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Schmid, B.; Michalsky, J.; Halthore, R.; Beauharnois, M.; Harrison, L.; Livingston, J.; Russell, P.; Holben, B.; Eck, T.; Smirnov, A. Comparison of aerosol optical depth from four solar radiometers during the fall 1997 ARM intensive observation period. Geophys. Res. Lett. 1999, 26, 2725–2728. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Molero, F.; Jaque, F. The laser as a tool in environmental problems. Opt. Mater. 1999, 13, 167–173. [Google Scholar] [CrossRef]
- Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh optical depth calculations. J. Atmos. Ocean Tech. 1999, 16, 1854–1861. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef]
- Sicard, M.; Bertolín, S.; Muñoz-Porcar, C.; Rodríguez, A.; Rocadenbosch, F.; Comerón, A. Separation of aerosol fine- and coarse-mode radiative properties: Effect on the mineral dust longwave, direct radiative forcing. Geophys. Res. Lett. 2014, 41, 6978–6985. [Google Scholar] [CrossRef] [Green Version]
- Krekov, G.M. Models of atmospheric aerosols. In Aerosol Effects on Climate; Jennings, S.G., Ed.; University of Arizona Press: Tucson, AZ, USA, 1993; pp. 9–72. [Google Scholar]
- Roger, J.C.; Mallet, M.; Dubuisson, P.; Cachier, H.; Vermote, E.; Dubovik, O.; Despiau, S. A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Experience sur Site pour Contraindre les Modèles de Pollution et de Transport d’Emission (ESCOMPTE) experiment. J. Geophys. Res. 2006, 111, D13208. [Google Scholar] [CrossRef] [Green Version]
- Escudero, M.; Castillo, S.; Querol, X.; Avila, A.; Alarcón, M.; Viana, M.M.; Alastuey, A.; Cuevas, E.; Rodríguez, S. Wet and dry African dust episodes over eastern Spain. J. Geophys. Res. 2005, 110, D18S08. [Google Scholar] [CrossRef] [Green Version]
- Salvador, P.; Artíñano, B.; Molero, F.; Viana, M.; Pey, J.; Alastuey, A.; Querol, X. African dust contribution to ambient aerosol levels across Central Spain: Characterization of long-range transport episodes of desert dust. Atmos. Res. 2013, 127, 117–129. [Google Scholar] [CrossRef]
- Commission Staff Working Paper, Establishing Guidelines for Demonstration and Subtraction of Exceedances Attributable to Natural Sources Under the Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe, Brussels. 2011. Available online: http://ec.europa.eu/environment/air/quality/ (accessed on 7 September 2020).
- Escudero, M.; Querol, X.; Pey, J.; Alastuey, A.; Pérez, N.; Ferreira, F.; Alonso, S.; Rodríguez, S.; Cuevas, E. A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos. Environ. 2007, 41, 5516–5524. [Google Scholar] [CrossRef]
- Querol, X.; Pey, J.; Pandolfi, M.; Alastuey, A.; Cusack, M.; Pérez, N.; Moreno, N.; Viana, M.; Mihalopoulos, N.; Kallos, G.; et al. African dust contributions to mean ambient PM10 mass-levels across the Mediterranean basin. Atmos. Environ. 2009, 43, 4266–4277. [Google Scholar] [CrossRef]
- Viana, M.; Salvador, P.; Artíñano, B.; Querol, X.; Alastuey, A.; Pey, J.; Latz, A.J.; Cabañas, M.; Moreno, T.; García, S.; et al. Assessing the performance of methods to detect and quantify African dust in airborne particulates. Environ. Sci. Technol. 2010, 44, 8814–8820. [Google Scholar] [CrossRef]
- Fernandez, A.J.; Molero, F.; Salvador, P.; Revuelta, A.; Becerril-Valle, M.; Gómez-Moreno, F.J.; Artíñano, B.; Pujadas, M. Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula. Atmos. Res. 2017, 196, 129–141. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition. 1998. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.8780&rep=rep1&type=pdf (accessed on 31 August 2020).
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley & Sons Publisher: Hoboken, NJ, USA, 1998. [Google Scholar]
- Cachorro, V.E.; Toledano, C.; Prats, N.; Sorribas, M.; Mogo, S.; Berjón, A.; Torres, B.; Rodrigo, R.; de la Rosa, J.; De Frutos, A.M. The strongest desert dust intrusion mixed with smoke over the Iberian Peninsula registered with Sun photometry. J. Geophys. Res. 2008, 113, D14S04. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Seinfeld, J. Radiative Forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res. 1998, 103, 31637–31645. [Google Scholar] [CrossRef]
- Highwood, E.; Haywood, J.; Silverstone, M.; Newman, S.M.; Taylor, J. Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. J. Geophys. Res. 2003, 108, D188578. [Google Scholar] [CrossRef] [Green Version]
- Kleidman, R.G.; O’Neill, N.T.; Remer, L.A.; Kaufman, Y.J.; Eck, T.F.; Tanre, D.; Dubovik, O.; Holben, B.N. Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensingretrievals of aerosol fine mode fraction over ocean. J. Geophys. Res. 2005, 110, D22205. [Google Scholar] [CrossRef]
Case # | Day | Hour (UTC) | ||
---|---|---|---|---|
1 | 14-07-2020 | 16:30–17:27 | 4.59 | 0.9930 |
2 | 14-07-2020 | 20:30–21:31 | 15.68 | 0.9866 |
3 | 15-07-2020 | 14:00–15:01 | 13.80 | 0.9975 |
4 | 15-07-2020 | 18:00–19:01 | 2.17 | 0.9955 |
5 | 20-07-2020 | 15:17–15:39 | 2.55 | 0.9964 |
6 | 20-07-2020 | 20:01–20:30 | 0.17 | 0.9894 |
Parameters | Shortwave | Longwave | |
---|---|---|---|
Spectral range (adjustable) | 0.3–4 µm | 4–50 µm | |
Number of sub-bands (non-adjustable) | 167 | 115 | |
Atmospheric parameters (different sources) | Atmospheric profile | Radio soundings | Radio soundings |
H2O | Radio soundings | Radio soundings | |
O3 profile | U.S. standard atmosphere | U.S. standard atmosphere | |
Absorption coefficients of main gases | HITRAN | HITRAN | |
Surface albedo | COPERNICUS Global land service | - | |
LW emissivity | - | CERES | |
Meteo parameters (different sources) | At surface | COPERNICUS Global land service | |
<20 km | Radio soundings | ||
>20 km | U.S. standard atmosphere | ||
Aerosols (different sources) | AOD | Ceilometer extinction coefficient, AERONET | Mie calculation |
Single-scattering albedo | AERONET | Mie calculation | |
Asymmetry factor | AERONET | Mie calculation | |
Aerosol vertical distribution | Ceilometer signal | Ceilometer signal | |
Size distribution | - | AERONET | |
Fine and coarse mode radius | - | AERONET | |
Fine and coarse mode concentration | - | AERONET | |
Refractive index | - | Krekov [50] |
Case | Day | Time (UTC) | [°] | AOD440 | SSA440 | asy440 | Fine- Mode- Fraction | ST | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SW BOA | SW TOA | LW BOA | LW TOA | |||||||||
1d | 04-02-2020 | 16:31 | 79.53 | 0.18 | 0.71 | 0.73 | 0.59 0.09 | 287.07 | −25.39 | −8.45 | +5.47 | +1.46 |
2d | 07-02-2020 | 16:26 | 78.02 | 0.33 | 0.91 | 0.76 | 0.56 0.11 | 283.34 | −32.71 | −22.49 | +7.98 | +3.68 |
3d | 28-02-2020 | 8:33 | 83.38 | 0.24 | 0.95 | 0.74 | 0.23 0.09 | 274.55 | −19.89 | −12.64 | +11.98 | +3.44 |
4d | 19-03-2020 | 11:50 | 41.75 | 0.70 | 0.94 | 0.77 | 0.24 0.12 | 290.85 | −66.39 | −46.72 | +3.84 | +3.30 |
5d | 24-03-2020 | 6:26 | 87.77 | 0.18 | 0.97 | 0.73 | 0.55 0.12 | 286.67 | −1.31 | −2.68 | +5.27 | +2.75 |
6d | 29-03-2020 | 8:11 | 78.21 | 0.13 | 0.93 | 0.72 | 0.80 0.16 | 280.47 | −13.65 | −9.10 | +1.17 | +0.43 |
7d | 08-05-2020 | 8:35 | 63.48 | 0.19 | 0.93 | 0.71 | 0.53 0.09 | 295.37 | −24.69 | −13.62 | +6.24 | +1.69 |
8d | 08-05-2020 | 17:14 | 67.66 | 0.19 | 0.93 | 0.68 | 0.57 0.08 | 300.11 | −24.19 | −13.68 | +7.02 | +2.51 |
Case | Day | Time (UTC) | [°] | AOD440 | SSA440 | asy440 | Fine- Mode- Fraction | ST | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SW BOA | SW TOA | LW BOA | LW TOA | |||||||||
1m | 08-01-2020 | 8:30 | 82.95 | 0.09 | 0.90 | 0.81 | 0.61 0.13 | 271.97 | −8.98 | −6.87 | +0.55 | +0.04 |
2m | 09-01-2020 | 8:22 | 84.11 | 0.09 | 0.77 | 0.71 | 0.87 0.17 | 274.96 | −8.83 | −2.49 | +1.47 | +0.04 |
3m | 14-01-2020 | 8:20 | 84.13 | 0.19 | 0.84 | 0.71 | 0.88 0.17 | 270.77 | −15.80 | −6.49 | +0.77 | +0.06 |
4m | 18-02-2020 | 9:06 | 70.59 | 0.07 | 0.89 | 0.76 | 0.88 0.27 | 275.44 | −10.18 | −3.95 | +1.27 | +0.23 |
5m | 19-02-2020 | 8:30 | 76.04 | 0.08 | 0.89 | 0.72 | 0.84 0.19 | 277.30 | −10.98 | −4.85 | +2.12 | +0.33 |
6m | 20-02-2020 | 8:27 | 76.27 | 0.08 | 0.81 | 0.72 | 0.82 0.18 | 276.23 | −12.43 | −3.72 | +1.71 | +0.15 |
7m | 21-02-2020 | 8:32 | 75.16 | 0.06 | 0.74 | 0.74 | 0.77 0.16 | 277.66 | −11.15 | −1.80 | +2.48 | +0.31 |
8m | 22-02-2020 | 8:33 | 74.70 | 0.06 | 0.81 | 0.71 | 0.84 0.19 | 277.81 | −9.54 | −3.00 | +0.69 | +0.06 |
9m | 23-02-2020 | 8:28 | 75.25 | 0.04 | 0.84 | 0.74 | 0.78 0.18 | 279.15 | −6.85 | −2.41 | +0.80 | +0.06 |
10m | 26-02-2020 | 8:33 | 73.53 | 0.05 | 0.92 | 0.70 | 0.41 0.12 | 278.82 | −8.66 | −4.10 | +1.83 | +0.45 |
11m | 02-03-2020 | 8:57 | 68.02 | 0.05 | 0.80 | 0.74 | 0.83 0.46 | 282.25 | −10.21 | −1.25 | +3.06 | +0.96 |
12m | 11-03-2020 | 8:18 | 71.69 | 0.08 | 0.79 | 0.71 | 0.59 0.09 | 283.89 | −14.64 | −2.52 | +1.02 | +0.35 |
13m | 26-03-2020 | 8:22 | 66.06 | 0.06 | 0.86 | 0.73 | 0.66 0.15 | 282.21 | −9.59 | −2.64 | +0.87 | +0.37 |
14m | 20-04-2020 | 8:37 | 55.81 | 0.08 | 0.92 | 0.70 | 0.80 0.13 | 284.73 | −9.12 | −4.11 | +0.70 | +0.28 |
15m | 29-04-2020 | 8:20 | 56.77 | 0.07 | 0.91 | 0.72 | 0.60 0.13 | 287.96 | −9.11 | −2.62 | +0.36 | +0.15 |
16m | 18-05-2020 | 8:32 | 51.24 | 0.05 | 0.88 | 0.69 | 0.63 0.08 | 293.93 | −7.46 | −1.75 | +0.96 | +0.19 |
17m | 19-05-2020 | 8:25 | 52.45 | 0.06 | 0.87 | 0.69 | 0.63 0.09 | 295.63 | −8.20 | −1.97 | +1.29 | +0.71 |
18m | 20-05-2020 | 8:27 | 51.95 | 0.06 | 0.88 | 0.69 | 0.61 0.09 | 297.88 | −8.43 | −1.92 | +3.64 | +1.28 |
Case | Day | Time (UTC) | [°] | AOD440 | SSA440 | asy440 | Fine- Mode- Fraction | ST | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SW BOA | SW TOA | LW BOA | LW TOA | |||||||||
1a | 08-01-2020 | 16:38 | 86.14 | 0.07 | 0.92 | 0.55 | 0.61 0.01 | 279.70 | −5.27 | −4.14 | +0.61 | +0.11 |
2a | 09-01-2020 | 16:20 | 83.26 | 0.15 | 0.80 | 0.55 | 0.74 0.12 | 278.87 | −13.83 | −5.44 | +1.30 | +0.12 |
3a | 14-02-2020 | 16:33 | 77.45 | 0.23 | 0.87 | 0.63 | 0.75 0.13 | 284.65 | −24.01 | −11.69 | +3.99 | +0.99 |
4a | 15-02-2020 | 16:26 | 76.07 | 0.15 | 0.93 | 0.53 | 0.74 0.15 | 287.14 | −16.98 | −11.36 | +0.06 | +0.02 |
5a | 16-02-2020 | 16:21 | 75.01 | 0.07 | 0.90 | 0.63 | 0.80 0.14 | 288.08 | −9.82 | −4.42 | +1.29 | +0.35 |
6a | 19-02-2020 | 16:26 | 75.08 | 0.07 | 0.86 | 0.53 | 0.64 0.09 | 285.41 | −10.54 | −4.98 | +2.24 | +0.66 |
7a | 20-02-2020 | 16:26 | 74.83 | 0.12 | 0.75 | 0.65 | 0.79 0.14 | 287.17 | −19.03 | −4.29 | +3.68 | +1.06 |
8a | 21-02-2020 | 16:41 | 77.09 | 0.08 | 0.68 | 0.65 | 0.68 0.09 | 288.25 | −13.16 | −2.51 | +1.53 | +0.46 |
9a | 22-02-2020 | 16:29 | 74.83 | 0.07 | 0.80 | 0.65 | 0.73 0.11 | 289.56 | −11.67 | −3.68 | +3.46 | +0.94 |
10a | 26-02-2020 | 17:03 | 79.69 | 0.03 | 0.83 | 0.66 | 0.60 0.12 | 288.61 | −5.67 | −1.78 | +2.43 | +0.81 |
11a | 02-03-2020 | 18:33 | 88.68 | 0.05 | 0.96 | 0.55 | 0.88 0.65 | 282.25 | −0.33 | −0.37 | +2.48 | +0.67 |
12a | 11-03-2020 | 16:11 | 67.38 | 0.11 | 0.79 | 0.53 | 0.33 0.06 | 297.80 | −20.84 | −4.33 | +2.84 | +1.32 |
13a | 01-04-2020 | 17:05 | 72.50 | 0.10 | 0.86 | 0.66 | 0.91 0.22 | 287.19 | −16.80 | −4.38 | +0.78 | +0.30 |
14a | 29-04-2020 | 16:24 | 59.67 | 0.09 | 0.97 | 0.55 | 0.60 0.13 | 317.00 | −11.97 | −8.97 | +0.92 | +0.78 |
15a | 10-05-2020 | 17:26 | 69.61 | 0.06 | 0.96 | 0.66 | 0.68 0.14 | 294.11 | −7.64 | −4.52 | +2.81 | +1.32 |
16a | 17-05-2020 | 16:18 | 55.76 | 0.09 | 0.97 | 0.57 | 0.62 0.09 | 298.74 | −9.89 | −6.05 | +2.58 | +1.59 |
17a | 18-05-2020 | 16:30 | 57.89 | 0.07 | 0.90 | 0.60 | 0.61 0.07 | 302.54 | −10.23 | −3.78 | +6.24 | +2.94 |
18a | 19-05-2020 | 16:27 | 57.19 | 0.06 | 0.89 | 0.54 | 0.65 0.08 | 305.40 | −8.01 | −3.24 | +4.39 | +2.20 |
19a | 20-05-2020 | 16:29 | 57.44 | 0.06 | 0.81 | 0.60 | 0.57 0.07 | 305.74 | −9.18 | −2.39 | +4.88 | +2.26 |
Median | 25th perc. | 75th perc. | Median | 25th perc. | 75th perc. | |||
---|---|---|---|---|---|---|---|---|
BOA SW before | −10.21 | −12.11 | −9.12 | T10.02 | −12.42 | −18.01 | −7.75 | T50.37 |
BOA SW lockdown | −8.77 | −9.12 | −8.20 | −9.89 | −11.53 | −8.30 | ||
TOA SW before | −3.72 | −4.66 | −2.49 | T20.25 | −4.31 | −5.21 | −3.09 | T60.89 |
TOA SW lockdown | −2.29 | −2.64 | −1.92 | −4.38 | −5.67 | −3.38 | ||
BOA LW before | 1.47 | 0.83 | 2.05 | T30.39 | 2.34 | 1.29 | 3.15 | T70.25 |
BOA LW lockdown | 0.92 | 0.70 | 1.29 | 2.81 | 1.34 | 4.76 | ||
TOA LW before | 0.23 | 0.06 | 0.35 | T40.23 | 0.67 | 0.24 | 0.97 | T80.02 |
TOA LW lockdown | 0.33 | 0.19 | 0.71 | 1.59 | 0.92 | 2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragan, R.; Molero, F.; Granados-Muñoz, M.J.; Salvador, P.; Pujadas, M.; Artíñano, B. Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period. Remote Sens. 2020, 12, 3699. https://doi.org/10.3390/rs12223699
Barragan R, Molero F, Granados-Muñoz MJ, Salvador P, Pujadas M, Artíñano B. Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period. Remote Sensing. 2020; 12(22):3699. https://doi.org/10.3390/rs12223699
Chicago/Turabian StyleBarragan, Ruben, Francisco Molero, María José Granados-Muñoz, Pedro Salvador, Manuel Pujadas, and Begoña Artíñano. 2020. "Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period" Remote Sensing 12, no. 22: 3699. https://doi.org/10.3390/rs12223699
APA StyleBarragan, R., Molero, F., Granados-Muñoz, M. J., Salvador, P., Pujadas, M., & Artíñano, B. (2020). Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period. Remote Sensing, 12(22), 3699. https://doi.org/10.3390/rs12223699