Assessing Scale Dependence on Local Sea Level Retrievals from Laser Altimetry Data over Sea Ice
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Local Sea Level Retrieved from ATM with Leads Identified by Using DMS
2.3. Local Sea Level Retrievals from the Lowest Elevation Method
3. Results
3.1. Local Sea Level from ATM L1B and DMS Images (Ground Truth)
3.2. Linear Least Square Fits at Different Scale Combinations
3.3. Quantifying the Accuracy of Local Sea Level Retrievals
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Döscher, R.; Vihma, T.; Maksimovich, E. Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmos. Chem. Phys. 2014, 14, 13571–13600. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Thomas, D. Losing Arctic sea ice: Observations of the recent decline and the long-term context. Sea Ice 2017, Chap. 11. 290–303. [Google Scholar]
- Simmonds, I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 2015, 56, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.; Cavalieri, D. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Zwally, H.J.; Robbins, J.W. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009). Ann. Glaciol. 2011, 52, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Ackley, S.; Yi, D.; Zwally, H.; Wagner, P.; Weissling, B.; Lewis, M.; Ye, K. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1039–1051. [Google Scholar] [CrossRef]
- Zwally, H.; Brenner, A.; Farrell, S.; Laxon, S.; Yi, D. Deriving sea-ice freeboard height distributions and estimates of ice thickness from ICESat/GLAS laser altimetry. AGU Fall Meet. Abstr. 2003, 2003, C32A–0442. [Google Scholar]
- Laxon, S.; Ridout, A.; Giles, K.; Willatt, R.; Wingham, D.; Hendricks, S.; Haas, C.; Beckers, J. Sea ice thickness from CryoSat2. AGU Fall Meet. Abstr. 2011, 2011, C41A-0374. [Google Scholar]
- Giles, K.A.; Laxon, S.W.; Worby, A.P. Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Markus, T. Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res.Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res.Oceans 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.L.; Laxon, S.W.; McAdoo, D.C.; Yi, D.; Zwally, H. Five years of Arctic sea ice freeboard measurements from the Ice, Cloud and land Elevation Satellite. J. Geophys. Res.Oceans 2009, 114. [Google Scholar] [CrossRef]
- Price, D.; Rack, W.; Haas, C.; Langhorne, P.J.; Marsh, O. Sea ice freeboard in McMurdo Sound, Antarctica, derived by surface-validated ICESat laser altimeter data. J. Geophys. Res.Oceans 2013, 118, 3634–3650. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, V.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, H.; Ke, Y.; Ackley, S.F.; Liu, L. A method to automatically determine sea level for referencing snow freeboards and computing sea ice thicknesses from NASA IceBridge airborne LIDAR. Remote Sens. Environ. 2013, 131, 160–172. [Google Scholar] [CrossRef]
- Krabill, W. IceBridge ATM L1B Elevation and Return Strength, Version 2; NASA DAAC at the National Snow and Ice Data Center: Boulder, CO, USA, 2013. [Google Scholar]
- Krabill, W. IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Data for 1993–2014; NASA DAAC at the National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Dominguez, R. IceBridge DMS L1B Geolocated and Orthorectified Images (IODMS1B, 2013); NASA DAAC at the National Snow and Ice Data Center: Boulder, CO, USA, 2010. [Google Scholar]
- Andersen, O.; Stenseng, L.; Piccioni, G.; Knudsen, P. The DTU15 MSS (mean sea surface) and DTU15LAT (lowest astronomical tide) reference surface. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Tian, L.; Xie, H.; Ackley, S.F.; Tang, J.; Mestas-Nuñez, A.M.; Wang, X. Sea-ice freeboard and thickness in the Ross Sea from airborne (IceBridge 2013) and satellite (ICESat 2003–2008) observations. Ann. Glaciol. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guan, F.; Liu, J.; Xie, H.; Ackley, S. An improved approach of total freeboard retrieval with IceBridge Airborne Topographic Mapper (ATM) elevation and Digital Mapping System (DMS) images. Remote Sens. Environ. 2016, 184, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Spreen, G. Uncertainties in Antarctic sea-ice thickness retrieval from ICESat. Ann. Glaciol. 2015, 56, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Cunningham, G.F.; Manizade, S.; Krabill, W. Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.T.; Neumann, A.; Martino, W.; Abdalati, K.; Brunt, B.; Csatho, S.; Farrell, H.; Fricker, A.; Gardner, D.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
Tracks | Count | ||
---|---|---|---|
OIB | OIB with 170 m gap | ICESat (2005) | |
track 1 | 22,236 | 1458 | 2458 |
track 2 | 3077 | 312 | 1213 |
track 3 | 51,364 | 3338 | 10,329 |
track 4 | 112,108 | 6313 | 11,548 |
track 5 | 125,531 | 7319 | 12,547 |
Tracks | OIB | OIB with 170 m gap | ||
---|---|---|---|---|
R2 | RMSE(m) | R2 | RMSE(m) | |
track 1 | 0.8066 | 0.0457 | 0.8207 | 0.0410 |
track 2 | 0.8204 | 0.0140 | 0.8332 | 0.0136 |
track 3 | 0.9058 | 0.0231 | 0.8876 | 0.0237 |
track 4 | 0.8956 | 0.0471 | 0.8632 | 0.0641 |
track 5 | 0.7295 | 0.0517 | 0.5158 | 0.0753 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Xie, H.; Ackley, S.F.; Mestas-Nuñez, A.M. Assessing Scale Dependence on Local Sea Level Retrievals from Laser Altimetry Data over Sea Ice. Remote Sens. 2020, 12, 3732. https://doi.org/10.3390/rs12223732
Tian L, Xie H, Ackley SF, Mestas-Nuñez AM. Assessing Scale Dependence on Local Sea Level Retrievals from Laser Altimetry Data over Sea Ice. Remote Sensing. 2020; 12(22):3732. https://doi.org/10.3390/rs12223732
Chicago/Turabian StyleTian, Liuxi, Hongjie Xie, Stephen F. Ackley, and Alberto M. Mestas-Nuñez. 2020. "Assessing Scale Dependence on Local Sea Level Retrievals from Laser Altimetry Data over Sea Ice" Remote Sensing 12, no. 22: 3732. https://doi.org/10.3390/rs12223732
APA StyleTian, L., Xie, H., Ackley, S. F., & Mestas-Nuñez, A. M. (2020). Assessing Scale Dependence on Local Sea Level Retrievals from Laser Altimetry Data over Sea Ice. Remote Sensing, 12(22), 3732. https://doi.org/10.3390/rs12223732