A Framework for Unsupervised Wildfire Damage Assessment Using VHR Satellite Images with PlanetScope Data
Abstract
:1. Introduction
2. Methodology
2.1. Data Description
2.2. Image Quality Assessment for PS Image Selection
2.3. Image Pre-Processing
2.4. Unsupervised Object-Based Change Detection
3. Experimental Results
3.1. Image Quality Assessment Results for PS Image Selection
3.2. Unsupervised Object-Based Change Detection Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stryker, T.; Jones, B. Disaster Response and the International Charter Program. Photogramm. Eng. Remote Sens. 2009, 75, 1342–1344. [Google Scholar]
- Jones, B.K.; Stryker, T.S.; Mahmood, A. The International Charter “Space and Major Disasters” Initiative. Acta Astronaut. 2003, 54, 183–190. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban Vegetation Classification: Benefits of Multitemporal RapidEye Satellite Data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef] [Green Version]
- Henits, L.; Jürgens, C.; Mucsi, L. Seasonal Multitemporal Land-Cover Classification and Change Detection Analysis of Bochum, Germany, Using Multitemporal Landsat TM Data. Int. J. Remote Sens. 2016, 37, 3439–3454. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-Scale Object-Based Image Analysis and Feature Selection of Multi-Sensor Earth Observation Imagery Using Random Forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.D.; Brewster, K.; Green, T.M.; Serbina, S.P. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity across Spatial Scales in a Pine Barrens Ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital Change Detection Methods in Ecosystem Monitoring: A Review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Bruzzone, L.; Bovolo, F. A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 609–630. [Google Scholar] [CrossRef]
- Pleniou, M.; Koutsias, N. Sensitivity of Spectral Reflectance Values to Different Burn and Vegetation Ratios: A Multi-Scale Approach Applied in a Fire Affected Area. ISPRS J. Photogramm. Remote Sens. 2013, 79, 199–210. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A. Detecting Unburned Areas within Wildfire Perimeters Using Landsat And Ancillary Data across the Northwestern United States. Remote Sens. Environ. 2016, 186, 275–285. [Google Scholar] [CrossRef]
- Collins, L.; Griffioen, P.; Newell, G.; Mellore, A. The Utility of Random Forests for Wildfire Severity Mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI Data for Initial Assessing of Burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Shimizu, K.; Ota, T.; Mizoue, N. Detecting Forest Changes Using Dense Landsat 8 and Sentinel-1 Time Series Data in Tropical Seasonal Forests. Remote Sens. 2019, 11, 1899. [Google Scholar] [CrossRef] [Green Version]
- Meng, R.; Wu, J.; Zhao, F.; Cook, B.D.; Hanavan, R.P.; Serbin, S.P. Measuring Short-Term Post-Fire Forest Recovery across a Burn Severity Gradient in a Mixed Pine-Oak Forest Using Multi-Sensor Remote Sensing Techniques. Remote Sens. Environ. 2018, 210, 282–296. [Google Scholar] [CrossRef]
- Dragozi, E.; Gitas, I.Z.; Bajocco, S.; Stavrakoudis, D.G. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece. Remote Sens. 2016, 8, 566. [Google Scholar] [CrossRef] [Green Version]
- Planet Imagery Product Specifications. Available online: https://bit.ly/33pWGGg (accessed on 4 October 2020).
- Santilli, G.; Vendittozzi, C.; Cappelletti, C.; Battistini, S.; Gessini, P. CubeSat Constellations for Disaster Management in Remote Areas. Acta Astronaut. 2018, 145, 11–17. [Google Scholar] [CrossRef]
- Kääb, A.; Altena, B.; Mascaro, J. Coseismic Displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, Earthquake Using the Planet Optical Cubesat Constellation. Nat. Hazards Earth Syst. Sci. 2017, 17, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Jung, H.-S.; Lee, M.-J.; Lee, W.-J.; Choi, M.-J. Oil Spill Detection from PlanetScope Satellite Image: Application to Oil Spill Accident near Ras Al Zour Area, Kuwait in August 2017. J. Coast. Res. 2019, 90, 251–260. [Google Scholar] [CrossRef]
- Won, M.; Jang, K.; Yoon, S.; Lee, H. Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019. Korean J. Remote Sens. 2019, 35, 1083–1093. [Google Scholar] [CrossRef]
- Kim, M.; Jung, M.; Kim, Y. Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment. Korean J. Remote Sens. 2019, 35, 517–534. [Google Scholar] [CrossRef]
- Shin, J.I.; Seo, W.W.; Kim, T.; Park, J.; Woo, C.S. Using UAV Multispectral Images for Classification of Forest Burn Severity—A Case Study of the 2019 Gangneung Forest Fire. Forests 2019, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Bovolo, F.; Bruzzone, L.; Marconcini, M. A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2070–2082. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Javed, A.; Jung, S.; Liu, S. Object-Based Change Detection of Very High Resolution Images by Fusing Pixel-Based Change Detection Results Using Weighted Dempster–Shafer Theory. Remote Sens. 2020, 12, 983. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Hu, Z.; Fan, Q. Superpixel-based unsupervised change detection using multi-dimensional change vector analysis and SVM-based classification. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012; pp. 257–262. [Google Scholar]
- Xue, J.-H.; Zhang, Y.-J. Ridler and Calvard’s, Kittler and Illingworth’s and Otsu’s Methods for Image Thresholding. Pattern Recognit. Lett. 2012, 33, 793–797. [Google Scholar] [CrossRef]
- Pan, J.; Hu, Z.; Su, Z.; Yang, M.-H. Deblurring text images via L0-regularized intensity and gradient prior. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Pan, J.; Hu, Z.; Su, Z.; Yang, M.-H. L0-Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 342–355. [Google Scholar] [CrossRef]
- Gangwon. Research Institute for Gangwon. Gangwon KOFST (Korean Federation of Science & Technology Societies). 1st Gangwon Province Disaster Prevention (Wildfire) Forum 2019. Available online: http://bitly.kr/A6LxHQJV3 (accessed on 4 October 2020).
- Korea Forest Service. Comprehensive Plan for the Prevention of National Forest Fire. 2020. Available online: http://bitly.kr/8OZNhLZQe (accessed on 4 October 2020).
- Planet. Planet Education and Research Program. Available online: https://bit.ly/2HUPr0U (accessed on 4 October 2020).
- Anger, J.; de Franchis, C.; Facciolo, G. Assessing the sharpness of satellite images: Study of the PlanetScope constellation. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 389–392. [Google Scholar]
- Wilson, N.; Greenberg, J.; Jumpasut, A.; Collison, A.; Weichelt, H. Absolute Radiometric Calibration of Planet Dove Satellites, Flocks 2p & 2e; Planet: San Francisco, CA, USA, 2017. [Google Scholar]
- Leach, N.; Coops, N.C.; Obrknezev, N. Normalization Method for Multi-Sensor High Spatial and Temporal Resolution Satellite Imagery with Radiometric Inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [Google Scholar] [CrossRef]
- Pohl, C.; Van Genderen, J. Preprocessing. In Remote Sensing Image Fusion, A Practical Guide; CRC Press: Boca Raton, FL, USA, 2016; pp. 71–92. [Google Scholar]
- Smith, J.A.; Lin, T.L.; Ranson, K.J. The Lambertian Assumption and Landsat Data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Gillespie, A. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Tan, B.; Wolfe, R.; Masek, J.; Gao, F.; Vermote, E.F. An illumination correction algorithm on Landsat-TM data. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1964–1967. [Google Scholar]
- Chung, M.; Kim, Y. Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery. Korean J. Remote Sens. 2020, 36, 179–197. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Pérez-Cabello, F.; Lasanta, T. Assessment of Radiometric Correction Techniques in Analyzing Vegetation Variability and Change Using Time Series of Landsat Images. Remote Sens. Environ. 2008, 112, 3916–3934. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Wang, C.; Yin, X. Incorporating texture into SLIC Super-pixels method for high spatial resolution remote sensing image segmentation. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Tong, H.; Tong, F.; Zhou, W.; Zhang, Y. Purifying SLIC Superpixels to Optimize Superpixel-Based Classification of High Spatial Resolution Remote Sensing Image. Remote Sens. 2019, 11, 2627. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-S.; Zhang, D.; Kang, M.-C.; Ko, S.-J. Improved simple linear iterative clustering superpixels. In Proceedings of the 2013 IEEE International Symposium on Consumer Electronics (ISCE), Hsinchu, Taiwan, 3–6 June 2013. [Google Scholar]
- Murray, H.; Lucieer, A.; Williams, R. Texture-Based Classification of Sub-Antarctic Vegetation Communities on Heard Island. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 138–149. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised Change Detection in VHR Images Using Contextual Information and Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Gurney, C.M.; Townshend, J.R.G. The Use of Contextual Information in the Classification of Remotely Sensed Data Contextual Methods. Photogramm. Eng. Remote Sens. 1983, 49, 55–64. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liu, P.; Choo, K.-K.R.; Wang, L.; Huang, F. SVM or Deep Learning? A Comparative Study on Remote Sensing Image Classification. Soft Comput. 2017, 21, 7053–7065. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Maillard, P. Comparing Texture Analysis Methods through Classification. Photogramm. Eng. Remote Sens. 2003, 69, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Fei, G.; Lu, Z.; Jun, W.; Jingyuan, M. Change detection in remote sensing images of damage areas with complex terrain using texture information and SVM. In Proceedings of the 2015 AASRI International Conference on Circuits and Systems (CAS 2015), Paris, France, 9–10 August 2015; pp. 225–229. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. Syst. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Berberoglu, S.; Akin, A.; Atkinson, P.M.; Curran, P.J. Utilizing Image Texture to Detect Land-Cover Change in Mediterranean Coastal Wetlands. Int. J. Remote Sens. 2010, 31, 2793–2815. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Y.; Pu, R.; Zhang, Z. Mapping Robinia Pseudoacacia Forest Health Conditions by Using Combined Spectral, Spatial, and Textural Information Extracted from IKONOS Imagery and Random Forest Classifier. Remote Sens. 2015, 7, 9020–9044. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D.S. Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects. Int. J. Remote Sens. 2011, 32, 2825–2850. [Google Scholar] [CrossRef]
- Mishra, V.N.; Prasad, R.; Rai, P.K.; Vishwakarma, A.K.; Arora, A. Performance Evaluation of Textural Features in Improving Land Use/Land Cover Classification Accuracy of Heterogeneous Landscape Using Multi-Sensor Remote Sensing Data. Earth Sci. Inform. 2019, 12, 71–86. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Wang, L. Evaluation of Morphological Texture Features for Mangrove Forest Mapping and Species Discrimination Using Multispectral IKONOS Imagery. IEEE Geosci. Remote Sens. Lett. 2009, 6, 393–397. [Google Scholar] [CrossRef] [Green Version]
Study Site | Sensor | Product | Spatial Resolution | Acquisition Date | Num. of Images 1 |
---|---|---|---|---|---|
Gangneung–East Sea region | GeoEye-1 | OR2A (Ortho-ready) | 2.0 m (MS) | 7 April 2019 (Post-fire) | 1 |
PlanetScope | Level-3B Analytic (Orthorectified) | 3.0 m (MS) | 1–8 April 2019 | 21 (25) | |
Goseong–Sokcho region | GeoEye-1 | OR2A (Ortho-ready) | 2.0 m (MS) | 7 April 2019 (Post-fire) | 1 |
PlanetScope | Level-3B Analytic (Orthorectified) | 3.0 m (MS) | 24 March–7 April 2019 | 16 (37) |
Study Site | Patch Type | Sharpness Score (S) | |||
---|---|---|---|---|---|
Mean | Std. | Max. | Min. | ||
Gangneung–East Sea region | Clear patch | 0.2717 | 0.0301 | 0.3574 | 0.0971 |
Non-clear patch | 0.2116 | 0.0448 | 0.2931 | 0.1133 | |
Total patch | 0.2587 | 0.0419 | 0.3574 | 0.0971 | |
Goseong–Sokcho region | Clear patch | 0.2723 | 0.0220 | 0.3169 | 0.1263 |
Non-clear patch | 0.2011 | 0.0480 | 0.2654 | 0.1187 | |
Total patch | 0.2640 | 0.0349 | 0.3169 | 0.1187 |
Study Site | FAR | MR | OA (%) | F1-Score |
---|---|---|---|---|
Gangneung–East Sea region | 0.080 | 0.297 | 87.299 | 0.705 |
Goseong–Sokcho region | 0.064 | 0.271 | 91.167 | 0.658 |
Acquisition Date | Product Name | Total Num. of Patches | Num. of Non-Clear Patches | Reference 1 |
---|---|---|---|---|
8 April 2019 | 20190408_015327 | 16 | 0 | O |
20190408_015325 | 70 | 1 | O | |
20190408_014857 | 41 | 2 | O | |
20190408_014856 | 30 | 4 | O | |
20190408_014742 | 14 | 0 | O | |
20190408_014740 | 7 | 0 | O | |
7 April 2019 | 20190407_015522 | 20 | 3 | O |
5 April 2019 | 20190405_014628 | 47 | 27 | X |
20190405_013759 | 50 | 29 | X | |
20190405_013758 | 21 | 17 | X | |
4 April 2019 | 20190404_014158 | 14 | 1 | O |
20190404_014157 | 50 | 1 | O | |
3 April 2019 | 20190403_014559 | 68 | 5 | X |
20190403_014558 | 4 | 0 | O | |
20190403_005542_1 | 20 | 5 | X | |
20190403_005542 | 51 | 7 | X | |
2 April 2019 | 20190402_014510 | 4 | 0 | O |
20190402_014509 | 68 | 5 | X | |
1 April 2019 | 20190401_014438 | 72 | 40 | X |
20190401_005834 | 3 | 0 | O | |
20190401_005833 | 15 | 0 | O |
Acquisition Date | Product Name | Total Num. of Patches | Num. of Non-Clear Patches | Reference 1 |
---|---|---|---|---|
7 April 2019 | 20190407_015731 | 77 | 1 | O |
20190407_005941 | 14 | 0 | O | |
20190407_005940 | 63 | 0 | O | |
4 April 2019 | 20190404_005839 | 14 | 0 | O |
3 April 2019 | 20190403_005827 | 35 | 0 | O |
20190403_005826 | 14 | 0 | O | |
1 April 2019 | 20190401_014748 | 49 | 47 | X |
20190401_014747 | 28 | 0 | O | |
26 March 2019 | 20190326_015027 | 28 | 2 | O |
20190326_015026 | 28 | 1 | O | |
25 March 2019 | 20190325_015008 | 76 | 20 | X |
20190325_015007 | 3 | 2 | O | |
24 March 2019 | 20190324_022022 | 57 | 11 | O |
20190324_022020 | 45 | 0 | O | |
20190324_014903 | 42 | 0 | O | |
20190324_014902 | 27 | 1 | O |
Change Detection Algorithm | Input Change Feature | FAR | MR | OA (%) | Kappa | F1-Score |
---|---|---|---|---|---|---|
Support vector machine (SVM) | 4 band | 0.001 | 0.103 | 97.333 | 0.926 | 0.944 |
GLCM | 0.004 | 0.033 | 98.833 | 0.969 | 0.976 | |
4 band + GLCM | 0.003 | 0.027 | 99.083 | 0.975 | 0.982 | |
Random forest (RF) 1 | 4 band | 0.006 | 0.033 | 98.683 | 0.965 | 0.973 |
GLCM | 0.006 | 0.023 | 99.000 | 0.973 | 0.980 | |
4 band + GLCM | 0.002 | 0.017 | 99.442 | 0.985 | 0.989 | |
SVM with pseudo-training data | 4 band | 0.006 | 0.060 | 98.083 | 0.948 | 0.961 |
GLCM | 0.008 | 0.017 | 99.000 | 0.973 | 0.980 | |
4 band + GLCM | 0.004 | 0.013 | 99.333 | 0.982 | 0.987 | |
RF with pseudo-training data 1 | 4 band | 0.050 | 0.038 | 95.292 | 0.879 | 0.911 |
GLCM | 0.046 | 0.021 | 95.992 | 0.897 | 0.924 | |
4 band + GLCM | 0.046 | 0.020 | 96.042 | 0.898 | 0.925 |
Change Detection Algorithm | Input Change Feature | FAR | MR | OA (%) | Kappa | F1-Score |
---|---|---|---|---|---|---|
Support vector machine (SVM) | 4 band | 0.002 | 0.047 | 98.667 | 0.964 | 0.973 |
GLCM | 0.002 | 0.017 | 99.417 | 0.984 | 0.988 | |
4 band + GLCM | 0.000 | 0.013 | 99.667 | 0.991 | 0.993 | |
Random forest (RF) 1 | 4 band | 0.004 | 0.014 | 99.317 | 0.982 | 0.986 |
GLCM | 0.002 | 0.024 | 99.225 | 0.979 | 0.984 | |
4 band + GLCM | 0.000 | 0.013 | 99.667 | 0.991 | 0.993 | |
SVM with pseudo-training data | 4 band | 0.000 | 0.070 | 98.250 | 0.952 | 0.964 |
GLCM | 0.017 | 0.023 | 98.167 | 0.952 | 0.964 | |
4 band + GLCM | 0.002 | 0.013 | 99.500 | 0.987 | 0.990 | |
RF with pseudo-training data 1 | 4 band | 0.058 | 0.065 | 93.992 | 0.845 | 0.886 |
GLCM | 0.052 | 0.020 | 95.600 | 0.888 | 0.918 | |
4 band + GLCM | 0.048 | 0.026 | 95.767 | 0.891 | 0.920 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, M.; Han, Y.; Kim, Y. A Framework for Unsupervised Wildfire Damage Assessment Using VHR Satellite Images with PlanetScope Data. Remote Sens. 2020, 12, 3835. https://doi.org/10.3390/rs12223835
Chung M, Han Y, Kim Y. A Framework for Unsupervised Wildfire Damage Assessment Using VHR Satellite Images with PlanetScope Data. Remote Sensing. 2020; 12(22):3835. https://doi.org/10.3390/rs12223835
Chicago/Turabian StyleChung, Minkyung, Youkyung Han, and Yongil Kim. 2020. "A Framework for Unsupervised Wildfire Damage Assessment Using VHR Satellite Images with PlanetScope Data" Remote Sensing 12, no. 22: 3835. https://doi.org/10.3390/rs12223835
APA StyleChung, M., Han, Y., & Kim, Y. (2020). A Framework for Unsupervised Wildfire Damage Assessment Using VHR Satellite Images with PlanetScope Data. Remote Sensing, 12(22), 3835. https://doi.org/10.3390/rs12223835