Remote Sensing and GIS for Environmental Analysis and Cultural Heritage
- We searched for ‘remote sensing’ and terms such as spatial modelling and planning, spatiotemporal analysis, urban analysis, land change and surveying engineering, occurring together in titles, abstracts, or keywords;
- We searched for ‘wide- and close-range remote sensing’ and each of the following terms: Spatial modelling and planning, spatiotemporal analysis, urban analysis, land change and surveying engineering, occurring together in titles, abstracts, or keywords.
Funding
Acknowledgments
Conflicts of Interest
References
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain. 2020, 22, 661–692. [Google Scholar] [CrossRef]
- Aal, A.K.A.; Kamel, M.; Alyami, S.H. Environmental Analysis of Land Use and Land Change of Najran City: GIS and Remote Sensing. Arab. J. Sci. Eng. 2020, 45, 8803–8816. [Google Scholar] [CrossRef]
- Kukulska-Koziel, A.; Szylar, M.; Cegielska, K.; Noszczyk, T.; Hernik, J.; Gawronski, K.; Dixon-Gough, R.; Jombach, S.; Valanszki, I.; Kovacs, K.F. Towards three decades of spatial development transformation in two contrasting post-Soviet cities-Krakow and Budapest. Land Use Policy 2019, 85, 328–339. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Bielecka, E. GIS spatial analysis modeling for land use change. A bibliometric analysis of the intellectual base and trends. Geosciences 2020, 10, 421. [Google Scholar] [CrossRef]
- Ma, H.R.; Cheng, X.W.; Chen, L.J.; Zhang, H.T.; Xiong, H.W. Automatic identification of shallow landslides based on Worldview2 remote sensing images. J. Appl. Remote Sens. 2016, 10, 016008. [Google Scholar] [CrossRef]
- Guo, B.B.; Fang, Y.L.; Jin, X.B.; Zhou, Y.K. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [Google Scholar] [CrossRef]
- Jaworek-Jakubska, J.; Filipiak, M.; Napierala-Filipiak, A. Understanding of Forest Cover Dynamics in Traditional Landscapes: Mapping Trajectories of Changes in Mountain Territories (1824–2016), on the Example of Jeleniogorska Basin, Poland. Forests 2020, 11, 867. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Aerial laser scanning reveals the dynamics of cropland abandonment in Poland. J. Land Use Sci. 2019, 14, 378–396. [Google Scholar] [CrossRef]
- Liu, P.; Di, L.; Du, Q.; Wang, L. Remote sensing big data: Theory, methods and applications. Remote Sens. 2018, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Laney, D. 3D Data Management: Controlling Data Volume, Velocity and Variety. Available online: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf (accessed on 11 November 2020).
- Mihu-Pintilie, A.; Nicu, I.C. GIS-based Landform Classification of Eneoli thic Archaeological Sites in the Plateau-plain Transition Zone (NE Romania): Habitation Practices vs. Flood Hazard Perception. Remote Sens. 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Bożek, P.; Janus, J.; Mitka, B. Analysis of Changes in Forest Structure using Point Clouds from Historical Aerial Photographs. Remote Sens. 2019, 11, 2259. [Google Scholar] [CrossRef] [Green Version]
- Osińska-Skotak, K.; Bakuła, K.; Jełowicki, Ł.; Podkowa, A. Using Canopy Height Model Obtained with Dense Image Matching of Archival Photogrammetric Datasets in Area Analysis of Secondary Succession. Remote Sens. 2019, 11, 2182. [Google Scholar] [CrossRef] [Green Version]
- Prus, B.; Wilkosz-Mamcarczyk, M.; Salata, T. Landmarks as Cultural Heritage Assets Affecting the Distribution of Settlements in Rural Areas—An Analysis Based on LIDAR DTM, Digital Photographs, and Historical Maps. Remote Sens. 2020, 12, 1778. [Google Scholar] [CrossRef]
- Szombara, S.; Lewińska, P.; Żądło, A.; Róg, M.; Maciuk, K. Analyses of the Prądnik riverbed Shape Based on Archival and Contemporary Data Sets—Old Maps, LiDAR, DTMs, Orthophotomaps and Cross-Sectional Profile Measurements. Remote Sens. 2020, 12, 2208. [Google Scholar] [CrossRef]
- Makuch, M.; Gawronek, P. 3D Point Cloud Analysis for Damage Detection on Hyperboloid Cooling Tower Shells. Remote Sens. 2020, 12, 1542. [Google Scholar] [CrossRef]
- Bieda, A.; Bydłosz, J.; Warchoł, A.; Balawejder, M. Historical Underground Structures as 3D Cadastral Objects. Remote Sens. 2020, 12, 1547. [Google Scholar] [CrossRef]
- Ossowski, R.; Przyborski, M.; Tysiac, P. Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis. Remote Sens. 2019, 11, 1951. [Google Scholar] [CrossRef] [Green Version]
- Kupidura, P. The Comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and Near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, 690. [Google Scholar] [CrossRef] [Green Version]
- Maciuk, K.; Lewińska, P. High-rate monitoring of satellite clocks using two methods of averaging time. Remote Sens. 2019, 11, 2754. [Google Scholar] [CrossRef] [Green Version]
- Biłozor, A.; Cieślak, I.; Czyża, S. An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory—A Case Study of the City of Olsztyn. Remote Sens. 2020, 12, 1784. [Google Scholar] [CrossRef]
- Chrobak, K.; Chrobak, G.; Kazak, J.K. The Use of Common Knowledge in Fuzzy Logic Approach for Vineyard Site Selection. Remote Sens. 2020, 12, 1775. [Google Scholar] [CrossRef]
- Hack, J.; Molewijk, D.; Beißler, M.R. A Conceptual Approach to Modeling the Geospatial Impact of Typical Urban Threats on the Habitat Quality of River Corridors. Remote Sens. 2020, 12, 1345. [Google Scholar] [CrossRef] [Green Version]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Bełej, M.; Figurska, M. 3D Modeling of Discontinuity in the Spatial Distribution of Apartment Prices Using Voronoi Diagrams. Remote Sens. 2020, 12, 229. [Google Scholar] [CrossRef] [Green Version]
- Kocur-Bera, K.; Dawidowicz, A. Land use versus land cover: Geo-analysis of national roads and synchronisation algorithms. Remote Sens. 2019, 11, 3053. [Google Scholar] [CrossRef] [Green Version]
- Dawid, L.; Tomza, M.; Dawid, A. Estimation of Usable Area of Flat-Roof Residential Buildings Using Topographic Data with Machine Learning Methods. Remote Sens. 2019, 11, 2382. [Google Scholar] [CrossRef] [Green Version]
- Stręk, Ż.; Noga, K. Method of delimiting the spatial structure of villages for the purposes of land consolidation and exchange. Remote Sens. 2019, 11, 1268. [Google Scholar] [CrossRef] [Green Version]
- Kozioł, K.; Maciuk, K. New Heights of the Highest Peaks of Polish Mountain Ranges. Remote Sens. 2020, 12, 1446. [Google Scholar] [CrossRef]
Keywords | |||||
---|---|---|---|---|---|
spatial modelling and planning | spatiotemporal analysis | urban analysis | land change | surveying engineering | |
remote sensing | 1448 | 1046 | 4323 | 12,721 | 322 |
wide- and close-range remote sensing | 4 | 1 | 2 | 7 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noszczyk, T.; Gawronek, P. Remote Sensing and GIS for Environmental Analysis and Cultural Heritage. Remote Sens. 2020, 12, 3960. https://doi.org/10.3390/rs12233960
Noszczyk T, Gawronek P. Remote Sensing and GIS for Environmental Analysis and Cultural Heritage. Remote Sensing. 2020; 12(23):3960. https://doi.org/10.3390/rs12233960
Chicago/Turabian StyleNoszczyk, Tomasz, and Pelagia Gawronek. 2020. "Remote Sensing and GIS for Environmental Analysis and Cultural Heritage" Remote Sensing 12, no. 23: 3960. https://doi.org/10.3390/rs12233960
APA StyleNoszczyk, T., & Gawronek, P. (2020). Remote Sensing and GIS for Environmental Analysis and Cultural Heritage. Remote Sensing, 12(23), 3960. https://doi.org/10.3390/rs12233960