Analysis of the Impact of Positional Accuracy When Using a Single Pixel for Thematic Accuracy Assessment
Abstract
:1. Introduction
2. Methodology
2.1. Simulation of Positional Errors between the Map and the Reference Data
2.2. Determination of the Reference Label
2.3. Thematic Accuracy Assessment
3. Study Area and Experiment
3.1. Study Area
3.2. Classification Data
3.3. Reference Data
3.4. Accuracy Assessment
4. Results
- (1)
- The mean value and standard deviation of , , and increase as the positional error grows. and exhibit the same values. at a particular scale (e.g., 150 m) is more significant than and at the same amount of positional error. For example, at the positional error of 1.0 pixels, average are all above 20% as compared to average which are all below 20%. Most values of are relatively stable except for the wavy shape of at the spatial scale of 150 m, with T being 100%.
- (2)
- The average lines of are very close, regardless of thresholds. The same patterns were also found among the lines of and , respectively.
- (3)
- The of the same spatial scale decrease as T rises. The same results are also reflected in either or . For example, when T grows to 100%, the errors in the three accuracy measures approximate 0% if positional errors are under 0.5 pixels. However, the increment in T results in a higher . For example, when the threshold is 0% or 25%, the values of the approach 0. The average lies between 3.46% and 9.84% and between 22.58% and 43.02% when the threshold reaches 50% and 75%, respectively. If T attains 100%, all values of are above 45.29%, with a maximum of 87.93% at a scale of 900 m. The lines of separate from each other if T exceeds 50%.
- (4)
- When the positional error is 0.5 pixels, and T is no more than 50%, , , and are higher than 10%. When the threshold is 75%, and lie between 3.69% and 4.72% while the lie between 8.65% and 9.60%. Nevertheless, over 23.73% of assessment units were abandoned, and the maximum percentage approximates 42.98%. If T is 100%, the , , and drop to 0%, but reaches over 50.72%, and the highest reaches 87.90%.
- (1)
- The upper-left sub-figure shows that the resulted from positional errors ranging from 0 to 2.0 pixels when T is 0%. Generally, the curve of a study site with a smaller LSI is lower than that of a study site with a larger LSI. For example, the line of study site #5 with an LSI of 367.1 is below that of study site #12 that has an LSI of 438.5. However, this is not true for all study sites. For example, study site #1 holds the minimum LSI (Table 3), yet its line is above that of study site #5.
- (2)
- drop as T grows from 0% to 100%. For example, most of the twelve study sites at the positional error of 0.5 pixels are higher than 10% if T is no more than 50%. When T reaches 75%, are reduced to under 10%. If T exceeds 75%, the drops to 0%.
- (3)
- The same patterns above were found among the study sites using and . However, are more sensitive to positional errors than is the . For instance, with the amount of 2 pixels’ positional errors, all are below 40%. In contrast, approximate 70%.
- (4)
- The values of remain steady compared to , , and . approaches 0% at the thresholds of 0% and 25%. However, lies between 1.12% and 14.55% and between 16.73% and 53.69% when T reaches 50% and 75%, respectively. When T is 100%, the varies between 49.31% and 87.17%.
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wulder, M.A.; Coops, N.C.; Roy, D.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote. Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Pengra, B.; Long, J.; Loveland, T. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30–37. [Google Scholar] [CrossRef]
- Wu, C.; Hou, X.; Peng, D.; Gonsamo, A.; Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: Spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 2016, 216, 177–187. [Google Scholar] [CrossRef]
- Xin, Q.; Broich, M.; Zhu, P.; Gong, P. Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sens. Environ. 2015, 161, 63–77. [Google Scholar] [CrossRef]
- Defourny, P.; D’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Homer, C.; Xian, G.; Jin, S.; Wickham, J.D.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Stehman, S.V.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Xiong, J.; Gumma, M.K.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.; Tilton, J.; Sankey, T.; et al. Global Food Security Support Analysis Data (GFSAD) at Nominal 1-km (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities. In Remote Sensing Handbook, 1st ed.; Teluguntla, P., Thenkabail, P., Eds.; CRC/Taylor & Francis: Boca Raton, FL, USA, 2016; Volume II, pp. 131–159. [Google Scholar]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.A.; Sorenson, D.G.; Granneman, B.J.; Poss, R.V.; Baer, L.A. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Tchuenté, A.T.K.; Roujean, J.-L.; De Jong, S.M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 207–219. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Morales-Barquero, L.; Lyons, M.B.; Phinn, S.R.; Roelfsema, C.M. Trends in Remote Sensing Accuracy Assessment Approaches in the Context of Natural Resources. Remote Sens. 2019, 11, 2305. [Google Scholar] [CrossRef] [Green Version]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef] [Green Version]
- Plourde, L.; Congalton, R.G. Sampling method and sample placement: How do they affect the accuracy of remotely sensed maps? Photogrammet. Eng. Remote Sens. 2003, 69, 289–297. [Google Scholar] [CrossRef]
- Stehman, S.V. Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment. Remote Sens. Environ. 2000, 72, 35–45. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. accuracy assessment—A users perspective. Photogrammetr. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.S.; Özdoğan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Congalton, R.G. The Positional Effect in Soft Classification Accuracy Assessment. Am. J. Remote Sens. 2019, 7, 50. [Google Scholar] [CrossRef]
- Gu, J.; Congalton, R.G.; Pan, Y. The Impact of Positional Errors on Soft Classification Accuracy Assessment: A Simulation Analysis. Remote Sens. 2015, 7, 579–599. [Google Scholar] [CrossRef] [Green Version]
- Powell, R.; Matzke, N.; De Souza, C.; Clark, M.; Numata, I.; Hess, L.; Roberts, D. Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens. Environ. 2004, 90, 221–234. [Google Scholar] [CrossRef]
- Nakaegawa, T. Uncertainty in land cover datasets for global land-surface models derived from 1-km global land cover datasets. Hydrol. Process. 2011, 25, 2703–2714. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Stehman, S.V. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska. Remote Sens. Environ. 2011, 115, 1401–1407. [Google Scholar] [CrossRef]
- Stehman, S.V.; Wickham, J.D. Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic accuracy assessment. Remote Sens. Environ. 2011, 115, 3044–3055. [Google Scholar] [CrossRef]
- Ye, S.; Rakshit, R.G.P., Jr. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based image classification. Int. J. Geogr. Inf. Sci. 2010, 25, 895–911. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities. GISci. Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- Rakshit, R.G.P., Jr.; Cheuk, M.L. A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. Int. J. Geogr. Inf. Sci. 2006, 20, 1–30. [Google Scholar] [CrossRef]
- Silván-Cárdenas, J.L.; Wang, L. Sub-pixel confusion–uncertainty matrix for assessing soft classifications. Remote Sens. Environ. 2008, 112, 1081–1095. [Google Scholar] [CrossRef]
- Janssen, L.L.F.; Vanderwel, F.J.M. Accuracy assessment of satellite-derived land-cover data—A review. Photogrammetr. Eng. Remote Sens. 1994, 60, 419–426. [Google Scholar]
- Richards, J.A. Classifier performance and map accuracy. Remote Sens. Environ. 1996, 57, 161–166. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.; Fry, J.; Smith, J.; Homer, C. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Remote Sens. Environ. 2010, 114, 1286–1296. [Google Scholar] [CrossRef]
- Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- Brown, K.M.; Foody, G.M.; Atkinson, P.M. Modelling geometric and misregistration error in airborne sensor data to enhance change detection. Int. J. Remote Sens. 2007, 28, 2857–2879. [Google Scholar] [CrossRef]
- Eastman, R.D.; Le Moigne, J.; Netanyahu, N.S. Research issues in image registration for remote sensing. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; Volume 1–8, pp. 1–8. [Google Scholar]
- Congalton, R.G. Thematic and Positional Accuracy Assessment of Digital Remotely Sensed Data. In Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, Portland, ME, USA, 3–6 October 2005; McRoberts, R.E., Reams, G.A., Van Deusen, P.C., McWilliams, W.H., Eds.; US Department of Agriculture, Forest Service: Washington, DC, USA, 2005; pp. 149–154. [Google Scholar]
- Aguilar, M.A.; Agüera, F.; Aguilar, F.J.; Carvajal, F.; Carvajal-Ramírez, F. Geometric accuracy assessment of the orthorectification process from very high resolution satellite imagery for Common Agricultural Policy purposes. Int. J. Remote Sens. 2008, 29, 7181–7197. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Tan, B.; Woodcock, C.E.; Stone, H.S.; Chen, Q.-S.; Cole-Rhodes, A.A.; Varshney, P.K.; Goshtasby, A.A.; Mount, D.M.; Ratanasanya, S.; et al. Image Registration for Remote Sensing; Cambridge University Press (CUP): Cambridge, UK, 2009. [Google Scholar]
- Keshtkar, H.; Voigt, W.; Alizadeh, E. Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arab. J. Geosci. 2017, 10, 154. [Google Scholar] [CrossRef]
- McRoberts, R.E. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area. Remote Sens. Environ. 2010, 114, 1710–1717. [Google Scholar] [CrossRef]
- Verbyla, D.L.; Hammond, T.O. Conservative bias in classification accuracy assessment due to pixel-by-pixel comparison of classified images with reference grids. Int. J. Remote Sens. 1995, 16, 581–587. [Google Scholar] [CrossRef]
- Smith, J.H.; Stehman, S.V.; Wickham, J.D.; Yang, L. Effects of landscape characteristics on land-cover class accuracy. Remote Sens. Environ. 2003, 84, 342–349. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Dai, X.; Khorram, S. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1566–1577. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhao, K.; Powers, R. Assessment of the image misregistration effects on object-based change detection. ISPRS J. Photogramm. Remote Sens. 2014, 87, 19–27. [Google Scholar] [CrossRef]
- Rakshit, R.G.P., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Warrens, M.J. Properties of the quantity disagreement and the allocation disagreement. Int. J. Remote Sens. 2015, 36, 1439–1446. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Li, C.; Yu, L.; Liu, D.; Gong, P. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250m resolution. ISPRS J. Photogramm. Remote Sens. 2015, 103, 38–47. [Google Scholar] [CrossRef]
- Schwaller, M.R.; Southwell, C.; Emmerson, L. Continental-scale mapping of Adélie penguin colonies from Landsat imagery. Remote Sens. Environ. 2013, 139, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure., PNW-GTR-351. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. Gen. Tech. Rep. 1995, 122, 351. [Google Scholar]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; Di Bella, C.M.; Ordoyne, C.; et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, M.A.; Molinari, M.E.; Hussein, E.; Chen, J.; Li, R. The First Comprehensive Accuracy Assessment of GlobeLand30 at a National Level: Methodology and Results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Kuenzer, C.; Leinenkugel, P.; Vollmuth, M.; Dech, S. Comparing global land-cover products—Implications for geoscience applications: An investigation for the trans-boundary Mekong Basin. Int. J. Remote Sens. 2014, 35, 2752–2779. [Google Scholar] [CrossRef] [Green Version]
- Bicheron, P.; Amberg, V.; Bourg, L.; Petit, D.; Huc, M.; Miras, B.; Hagolle, O.; Delwart, S.; Ranera, F.; Arino, O.; et al. Geolocation Assessment of MERIS GlobCover Orthorectified Products. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2972–2982. [Google Scholar] [CrossRef]
- Sylvander, S.; Albert-Grousset, I.; Henry, P. Geometrical performance of the VEGETATION products. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2004; Volume 571, pp. 573–575. [Google Scholar]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.T.; Shalaby, A.; Alsaaideh, B.; et al. Production of global land cover data—GLCNMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Davis, C.; Wang, X. High resolution DEMs for urban applications. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2002; Volume 2887, pp. 2885–2889. [Google Scholar]
- Husak, G.J.; Hadley, B.C.; McGwire, K.C. Landsat thematic mapper registration accuracy and its effects on the IGBP validation. Photogrammetr. Eng. Remote Sens. 1999, 65, 1033–1039. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R.A. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Sylvander, S.; Henry, P.; Bastien-Thiry, C.; Meunier, F.; Fuster, D. VEGETATION geometrical image quality. Bulletin de la Société Française de Photogrammétrie et de Télédétection 2000, 159, 59–65. [Google Scholar]
- Shirahata, L.M.; Iizuka, K.; Yusupujiang, A.; Rinawan, F.R.; Bhattarai, R.; Dong, X. Production of Global Land Cover Data–GLCNMO2013. J. Geograph. Geol. 2017, 9, 1–15. [Google Scholar]
- Defourny, P.; Bontemps, S.; Obsomer, V.; Schouten, L.; Bartalev, S.; Herold, M.; Bicheron, P.; Bogaert, E.; Leroy, M.; Arino, O. Accuracy assessment of global land cover maps: Lessons learnt from the GlobCover and GlobCorine Experiences. In Proceedings of the 2010 European Space Agency Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. [Google Scholar]
Reference | |||||||
---|---|---|---|---|---|---|---|
Class 1 | Class 2 | … | Class C | Sample Total | Population Total | ||
Classification | Class 1 | n11 | n12 | … | n1C | n1+ | N1 |
Class 2 | n21 | n22 | … | n2C | n2+ | N2 | |
… | … | … | … | … | … | … | |
Class C | nC1 | nC2 | … | nCC | nC+ | NC | |
n+1 | n+2 | … | n+C | n | N | ||
Accuracy Measures |
Reference | ||||||
---|---|---|---|---|---|---|
Class 1 | Class 2 | … | Class C | Total | ||
Classification | Class 1 | P11 | P12 | … | P1C | P1+ |
Class 2 | P21 | P22 | … | P2C | P2+ | |
… | … | … | … | … | … | |
Class k | PC1 | PC2 | … | PCC | PC+ | |
Total | P+1 | P+2 | … | P+C | 1 | |
Accuracy measures |
Level I | Class Name | Level II | Class Name |
---|---|---|---|
1 | Water | 11 | Open Water |
12 | Perennial Ice/Snow (#) | ||
2 | Developed | 21 | Developed, Open space |
22 | Developed, Low intensity | ||
23 | Developed, Medium intensity | ||
24 | Developed, High intensity | ||
3 | Barren | 31 | Barren Land |
4 | Forest | 41 | Deciduous Forest |
42 | Evergreen Forest | ||
43 | Mixed Forest | ||
5 | Shrubland | 51 | Dwarf Scrub (#) |
52 | Shrub/Scrub | ||
7 | Herbaceous | 71 | Grassland/Herbaceous |
72 | Sedge/Herbaceous (#) | ||
73 | Lichens (#) | ||
74 | Moss (#) | ||
8 | Planted/ Cultivated | 81 | Pasture/Hay |
82 | Cultivated Crops | ||
9 | Wetlands | 90 | Woody Wetlands |
95 | Emergent Herbaceous Wetlands |
Level | Landscape Shape Index (LSI) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site #1 | Site #2 | Site #3 | Site #4 | Site #5 | Site #6 | Site #7 | Site #8 | Site #9 | Site #10 | Site #11 | Site #12 | |
I | 145.5 | 179.4 | 212.3 | 274.2 | 367.1 | 253.8 | 371.8 | 326.2 | 318.3 | 390.9 | 387.9 | 438.5 |
II | 152.3 | 186.9 | 293.5 | 308.9 | 372.3 | 379.9 | 400.7 | 427.8 | 537.8 | 673.9 | 760.6 | 850.7 |
Level II | Percentage of Area (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 | Site 8 | Site 9 | Site 10 | Site 11 | Site 12 | |
11 | 0.04 | 0.07 | 9.37 | 1.04 | 0.20 | 42.04 | 3.51 | 1.32 | 3.34 | 1.22 | 2.02 | 1.79 |
21 | 2.65 | 0.20 | 1.56 | 3.40 | 0.81 | 3.23 | 2.10 | 3.43 | 3.59 | 6.48 | 5.85 | 9.34 |
22 | 0.17 | 0.05 | 1.61 | 1.41 | 0.16 | 2.34 | 0.42 | 1.41 | 2.64 | 3.54 | 2.78 | 4.60 |
23 | 0.04 | 0.00 | 1.18 | 0.47 | 0.05 | 0.86 | 0.10 | 0.33 | 0.71 | 1.72 | 1.07 | 1.56 |
24 | 0.01 | 0.00 | 0.51 | 0.19 | 0.01 | 0.38 | 0.02 | 0.13 | 0.27 | 0.79 | 0.38 | 0.66 |
31 | 0.09 | 0.67 | 20.57 | 0.06 | 0.43 | 0.24 | 0.12 | 0.20 | 0.33 | 0.17 | 0.29 | 0.16 |
41 | 0.03 | 0.19 | 6.49 | 3.12 | 0.01 | 16.90 | 2.36 | 14.94 | 5.50 | 30.69 | 28.09 | 22.23 |
42 | 0.00 | 2.43 | 4.02 | 0.02 | 7.09 | 3.14 | 0.15 | 0.05 | 14.89 | 1.68 | 14.37 | 18.62 |
43 | 0.00 | 0.07 | 0.17 | 0.06 | 0.00 | 3.00 | 0.21 | 0.76 | 7.56 | 9.26 | 11.81 | 13.55 |
52 | 0.77 | 67.36 | 34.91 | 0.02 | 61.55 | 0.81 | 17.04 | 0.39 | 3.13 | 0.20 | 4.93 | 2.64 |
71 | 29.21 | 26.44 | 8.44 | 18.61 | 28.03 | 2.38 | 30.47 | 11.05 | 1.89 | 0.58 | 3.58 | 4.10 |
81 | 1.61 | 0.45 | 1.44 | 1.10 | 0.00 | 0.73 | 3.00 | 42.43 | 10.32 | 30.03 | 14.75 | 15.57 |
82 | 65.08 | 0.71 | 6.88 | 68.92 | 1.33 | 15.16 | 39.01 | 21.54 | 17.92 | 13.24 | 3.67 | 2.99 |
90 | 0.13 | 0.55 | 0.27 | 0.93 | 0.19 | 8.33 | 0.47 | 1.70 | 26.00 | 0.37 | 5.96 | 2.07 |
95 | 0.17 | 0.82 | 2.58 | 0.66 | 0.14 | 0.46 | 1.01 | 0.32 | 1.92 | 0.04 | 0.47 | 0.11 |
Level I | Percentage of Area (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 | Site 8 | Site 9 | Site 10 | Site 11 | Site 12 | |
1 | 0.04 | 0.07 | 9.37 | 1.04 | 0.20 | 42.04 | 3.51 | 1.32 | 3.34 | 1.22 | 2.02 | 1.79 |
2 | 2.87 | 0.26 | 4.86 | 5.47 | 1.03 | 6.81 | 2.64 | 5.30 | 7.21 | 12.52 | 10.08 | 16.16 |
3 | 0.09 | 0.67 | 20.57 | 0.06 | 0.43 | 0.24 | 0.12 | 0.20 | 0.33 | 0.17 | 0.29 | 0.16 |
4 | 0.03 | 2.69 | 10.68 | 3.20 | 7.09 | 23.04 | 2.72 | 15.75 | 27.95 | 41.62 | 54.26 | 54.40 |
5 | 0.77 | 67.36 | 34.91 | 0.02 | 61.55 | 0.81 | 17.04 | 0.39 | 3.13 | 0.20 | 4.93 | 2.64 |
7 | 29.21 | 26.44 | 8.44 | 18.61 | 28.03 | 2.38 | 30.47 | 11.05 | 1.89 | 0.58 | 3.58 | 4.10 |
8 | 66.69 | 1.16 | 8.32 | 70.02 | 1.33 | 15.90 | 42.01 | 63.97 | 28.23 | 43.27 | 18.42 | 18.56 |
9 | 0.30 | 1.36 | 2.85 | 1.59 | 0.33 | 8.78 | 1.49 | 2.03 | 27.92 | 0.41 | 6.43 | 2.18 |
LC Datasets | Time | Sensor | Classification Scheme | Spatial Resolution | Overall Accuracy | Positional Accuracy | Reference |
---|---|---|---|---|---|---|---|
IGBP | 1992–1993 | AVHRR | IGBP (17 classes) | 1000 m | 66.9% | ~1km (1 pixel) | [72,73] |
UMD | 1992–1993 | AVHRR | Simplified IGBP (14 classes) | 1000 m | 65.0% | ~1km (1 pixel) | [74,75] |
GLC 2000 | 1999–2000 | SPOT-VGT | LCCS (22 classes) | 1000 m | 68.6% | 300m–465m (0.3–0.47 pixels) | [8,76] |
MCD12 | 2001–2018 | MODIS | 6 classification schemes | 500 m | 73.6% | 50–100m (0.1–0.2 pixels) | [68,70] |
GLCNMO | 2003/2008 /2013 | MODIS | Modified LCCS (20 classes) | 1000 /500m | 74.8% | 96–200m Oceania:264–344 m (0.19–0.69 pixels) | [69,77] |
GlobCover | 2005/2009 | MERIS | LCCS (22 classes) | 300 m | 67.5% | 77m (0.26 pixels) | [66,78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Congalton, R.G. Analysis of the Impact of Positional Accuracy When Using a Single Pixel for Thematic Accuracy Assessment. Remote Sens. 2020, 12, 4093. https://doi.org/10.3390/rs12244093
Gu J, Congalton RG. Analysis of the Impact of Positional Accuracy When Using a Single Pixel for Thematic Accuracy Assessment. Remote Sensing. 2020; 12(24):4093. https://doi.org/10.3390/rs12244093
Chicago/Turabian StyleGu, Jianyu, and Russell G. Congalton. 2020. "Analysis of the Impact of Positional Accuracy When Using a Single Pixel for Thematic Accuracy Assessment" Remote Sensing 12, no. 24: 4093. https://doi.org/10.3390/rs12244093
APA StyleGu, J., & Congalton, R. G. (2020). Analysis of the Impact of Positional Accuracy When Using a Single Pixel for Thematic Accuracy Assessment. Remote Sensing, 12(24), 4093. https://doi.org/10.3390/rs12244093