Improvement and Impacts of Forest Canopy Parameters on Noah-MP Land Surface Model from UAV-Based Photogrammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Data Collection
2.2. Workflow from UAV Photogrammetry to Land-Atmospheric Simulation
2.3. Airborne Equipment and Processing Software Setup
2.4. Land Surface Model Setup
3. Results
3.1. Comparison of UAV-Based and Model-Original Canopy Parameters
3.2. Performance of the Surface Energy Budget Simulation
4. Discussion
4.1. Issues Related to Canopy Exchange Coefficients
4.2. Issues Related to Vegetation Variables
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pitman, A. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 2003, 23, 479–510. [Google Scholar]
- Zhao, W.; Li, A. A review on land surface processes modelling over complex terrain. Adv. Meteorol. 2015, 2015, 607181. [Google Scholar]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar]
- Chang, M.; Fan, S.; Wang, X. Impact of refined land-cover data on WRF performance over the Pearl River Delta region, China. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2014, 34. [Google Scholar] [CrossRef]
- Eagleson, P.S. Land Surface Processes in Atmospheric General Circulation Models; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Liu, X.; Chen, F.; Barlage, M.; Zhou, G.; Niyogi, D. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model. J. Geophys. Res. Atmos. 2016, 121, 13–953. [Google Scholar]
- Yin, G.; Li, J.; Liu, Q.; Fan, W.; Xu, B.; Zeng, Y.; Zhao, J. Regional leaf area index retrieval based on remote sensing: The role of radiative transfer model selection. Remote Sens. 2015, 7, 4604–4625. [Google Scholar]
- Xue, Y.; Sellers, P.; Kinter, J.; Shukla, J. A simplified biosphere model for global climate studies. J. Clim. 1991, 4, 345–364. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar]
- Xiu, A.; Pleim, J.E. Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteorol. 2001, 40, 192–209. [Google Scholar]
- Mitchell, K. The Community Noah Land-Surface Model (LSM) User’s Guide. Public Release Version 2.7.1; National Weather Service, National Center for Environmental Prediction: Camp Springs, MD, USA, 2005.
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. D Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Ke, Y.; Leung, L.; Huang, M.; Coleman, A.M.; Li, H.; Wigmosta, M.S. Development of high resolution land surface parameters for the Community Land Model. Geosci. Model Dev. 2012, 5, 1341. [Google Scholar]
- Smirnova, T.G.; Brown, J.M.; Benjamin, S.G.; Kenyon, J.S. Modifications to the rapid update cycle land surface model (RUC LSM) available in the weather research and forecasting (WRF) model. Mon. Weather Rev. 2016, 144, 1851–1865. [Google Scholar]
- Baldocchi, D.D.; Hicks, B.B.; Camara, P. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ. (1967) 1987, 21, 91–101. [Google Scholar]
- Droppo, J.G. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2006.
- Huang, D.; Knyazikhin, Y.; Wang, W.; Deering, D.W.; Stenberg, P.; Shabanov, N.; Tan, B.; Myneni, R.B. Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements. Remote Sens. Environ. 2008, 112, 35–50. [Google Scholar]
- Ma, Y.; Liu, H. An advanced multiple-layer canopy model in the WRF model with large-eddy simulations to simulate canopy flows and scalar transport under different stability conditions. J. Adv. Model. Earth Syst. 2019, 11, 2330–2351. [Google Scholar]
- Gan, Y.; Liang, X.Z.; Duan, Q.; Chen, F.; Li, J.; Zhang, Y. Assessment and reduction of the physical parameterization uncertainty for Noah-MP Land Surface Model. Water Resour. Res. 2019, 55, 5518–5538. [Google Scholar]
- Haynes, K.; Baker, I.; Denning, S. Simple Biosphere Model Version 4.2 (SiB4) Technical Description; Colorado State University: Fort Collins, CO, USA, 2020. [Google Scholar]
- Weiss, M.; Baret, F. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sens. 2017, 9, 111. [Google Scholar]
- Guo, Q.; Su, Y.; Hu, T.; Zhao, X.; Wu, F.; Li, Y.; Liu, J.; Chen, L.; Xu, G.; Lin, G.; et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. Int. J. Remote. Sens. 2017, 38, 2954–2972. [Google Scholar]
- Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [Google Scholar]
- McNeil, B.E.; Pisek, J.; Lepisk, H.; Flamenco, E.A. Measuring leaf angle distribution in broadleaf canopies using UAVs. Agric. For. Meteorol. 2016, 218, 204–208. [Google Scholar]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 2019, 3, 10. [Google Scholar]
- Chung, C.H.; Huang, C.Y. Hindcasting tree heights in tropical forests using time-series unmanned aerial vehicle imagery. Agric. For. Meteorol. 2020, 290, 108029. [Google Scholar]
- Brüllhardt, M.; Rotach, P.; Schleppi, P.; Bugmann, H. Vertical light transmission profiles in structured mixed deciduous forest canopies assessed by UAV-based hemispherical photography and photogrammetric vegetation height models. Agric. For. Meteorol. 2020, 281, 107843. [Google Scholar]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar]
- Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [Google Scholar]
- Chang, M.; Liao, W.; Wang, X.; Zhang, Q.; Chen, W.; Wu, Z.; Hu, Z. An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agric. For. Meteorol. 2020, 281, 107815. [Google Scholar]
- Yan, J.H.; Zhou, G.Y.; Zhang, D.Q.; Tang, X.L.; Wang, X. Different patterns of changes in the dry season diameter at breast height of dominant and evergreen tree species in a mature subtropical forest in South China. J. Integr. Plant Biol. 2006, 48, 906–913. [Google Scholar]
- Zhou, G.; Guan, L.; Wei, X.; Zhang, D.; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z.; et al. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecol. 2007, 188, 77–89. [Google Scholar]
- Yu, X.; Pan, Y.; Song, W.; Li, S.; Li, D.; Zhu, M.; Zhou, H.; Zhang, Y.; Li, D.; Yu, J.; et al. Wet and Dry Nitrogen Depositions in the Pearl River Delta, South China: Observations at Three Typical Sites with an Emphasis on Water-Soluble Organic Nitrogen. J. Geophys. Res. Atmos. 2020, 125, e2019JD030983. [Google Scholar]
- Puliti, S.; Talbot, B.; Astrup, R. Tree-stump detection, segmentation, classification, and measurement using unmanned aerial vehicle (UAV) imagery. Forests 2018, 9, 102. [Google Scholar]
- Larrinaga, A.R.; Brotons, L. Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery. Drones 2019, 3, 6. [Google Scholar]
- Pix4D SA. Pix4Dmapper 4.1 User Manual; Pix4D SA: Lausanne, Switzerland, 2017. [Google Scholar]
- Brunsell, N.A.; de Oliveira, G.; Barlage, M.; Shimabukuro, Y.; Moraes, E.; Aragão, L. Examination of seasonal water and carbon dynamics in eastern Amazonia: A comparison of Noah-MP and MODIS. Theor. Appl. Climatol. 2020, 1–16. [Google Scholar] [CrossRef]
- Ma, Q.; Su, Y.; Guo, Q. Comparison of canopy cover estimations from airborne LiDAR, aerial imagery, and satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4225–4236. [Google Scholar]
- Hu, T.; Ma, Q.; Su, Y.; Battles, J.J.; Collins, B.M.; Stephens, S.L.; Kelly, M.; Guo, Q. A simple and integrated approach for fire severity assessment using bi-temporal airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 25–38. [Google Scholar]
- Zhang, Q.; Chang, M.; Zhou, S.; Chen, W.; Wang, X.; Liao, W.; Dai, J.; Wu, Z. Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China. Asia-Pac. J. Atmos. Sci. 2017, 53, 519–536. [Google Scholar]
- Dickinson, R.E.; Shaikh, M.; Bryant, R.; Graumlich, L. Interactive canopies for a climate model. J. Clim. 1998, 11, 2823–2836. [Google Scholar]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. [Google Scholar]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. D Atmos. 1996, 101, 7251–7268. [Google Scholar]
- Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E.; Su, H. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res. D Atmos. 2007, 112. [Google Scholar]
- Chen, F.; Janjić, Z.; Mitchell, K. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteorol. 1997, 85, 391–421. [Google Scholar]
- Niu, G.Y.; Yang, Z.L. Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys. Res. D Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol. 2006, 7, 937–952. [Google Scholar]
- Verseghy, D.L. CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol. 1991, 11, 111–133. [Google Scholar]
- Jordan, R. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for Sntherm. 89; Technical Report; Cold Regions Research and Engineering Lab.: Hanover, NH, USA, 1991. [Google Scholar]
- Barlage, M.; Tewari, M.; Chen, F.; Miguez-Macho, G.; Yang, Z.L.; Niu, G.Y. The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Clim. Chang. 2015, 129, 485–498. [Google Scholar]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 2018, 9, 102. [Google Scholar]
- Cuntz, M.; Mai, J.; Zink, M.; Thober, S.; Kumar, R.; Schäfer, D.; Schrön, M.; Craven, J.; Rakovec, O.; Spieler, D.; et al. Computationally inexpensive identification of noninformative model parameters by sequential screening. Water Resour. Res. 2015, 51, 6417–6441. [Google Scholar]
- Arsenault, K.R.; Nearing, G.S.; Wang, S.; Yatheendradas, S.; Peters-Lidard, C.D. Parameter sensitivity of the noah-mp land surface model with dynamic vegetation. J. Hydrometeorol. 2018, 19, 815–830. [Google Scholar]
Land Surface Models | Noah | Noah-MP | CLM | RUC | SSiB | PX |
---|---|---|---|---|---|---|
Vegetative components | One vegetation type | One vegetation type | Subgrids with up to | Multiple vegetation types by | One vegetation type | One vegetation type |
in one gridcell without | in one gridcell with | 10 vegetation types in | using land use fractions in | in one gridcell without | in one gridcell without | |
dynamic vegetation | dynamic vegetation | one gridcell with dynamic | one gridcell without dynamic | dynamic vegetation | dynamic vegetation | |
and carbon budget | and carbon budget | vegetation and carbon budget | vegetation and carbon budget | and carbon budget | and carbon budget | |
Photosynthetic pathway | No | Yes, | Yes, | No | No | Yes, |
Phenology | Yes, | Yes, | Yes, | Yes, | No | Yes, |
Relative leaf nitrogen profile | No | Yes, | Yes, | No | No | No |
Leaf dimension | No | No | Yes, | No | Yes, | No |
Leaf area index | Yes, | Yes, | Yes, | Yes, | Yes, | Yes, |
Canopy heights | Yes, | Yes, | Yes, | No | Yes, | No |
Length of live crown | No | No | No | No | No | No |
Length of dead crown | No | No | No | No | No | No |
Crown radius | No | Yes, | Yes, | No | No | No |
Number of branches | No | Yes, | No | No | No | No |
Branch zenith | No | No | No | No | No | No |
Platform & Scheme | DJI Phantom | DJI M600 Equipped with | DJI M600 Equipped |
---|---|---|---|
3 Professional | Five-Lens Tilt Camera | with Lidar | |
Full weight of equipments | ∼4 kg | ∼30 kg | ∼30 kg |
Packaging & dimensions | 390 × 360 × 210 mm | 525 × 480 × 640 mm | 525 × 480 × 640 mm |
of transport | |||
Procurement cost | ∼CNY10,000 | ∼CNY110,000 | ∼CNY210,000 |
Operator | 1∼2 person | 2∼3 person | 2∼3 person |
Low cost, easy to | Higher measurement | Highest measurement | |
Main advantage | carry and moderate | and can obtain more abundant | accuracy and strong |
operation difficulty | spectral characteristics of images | penetration ability |
Physical Processes | Options | Reference |
---|---|---|
Options for dynamic vegetation | Dynamic vegetation model | Dickinson et al. [43] |
Options for canopy stomatal resistance | Ball-Berry scheme | Ball et al. [44] |
Options for soil moisture factor | Noah type (based on soil moisture) | Chen et al. [45] |
for stomatal resistance | ||
Options for runoff and groundwater | Simple groundwater model (SIMGM) | Niu et al. [46] |
Options for surface layer drag coefficient | Original Noah (Chen97) | Chen et al. [47] |
Options for radiation transfer | Modified two-stream, | Niu and Yang [48] |
Options for frozen soil permeability | Linear effects, more permeable (NY06) | Niu and Yang [49] |
Options for supercooled liquid water | No iteration (NY06) | Niu and Yang [49] |
Options for ground snow surface albedo | Canadian land surface scheme (CLASS) | Verseghy [50] |
Options for partitioning precipitation | Jordan scheme | Jordan [51] |
into rainfall & snowfall | ||
Options for lower boundary condition | TBOT at ZBOT (8m) read from | Barlage et al. [52] |
of soil temperature | a file (original Noah) | |
Options for snow and soil temperature | Semi-implicit | Niu et al. [13] |
time scheme |
Canopy Parameter | Dist Type | Functions | Coefficients |
---|---|---|---|
Tree height | Weibull | ||
Crown radius | Burr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Zhu, S.; Cao, J.; Chen, B.; Zhang, Q.; Chen, W.; Jia, S.; Krishnan, P.; Wang, X. Improvement and Impacts of Forest Canopy Parameters on Noah-MP Land Surface Model from UAV-Based Photogrammetry. Remote Sens. 2020, 12, 4120. https://doi.org/10.3390/rs12244120
Chang M, Zhu S, Cao J, Chen B, Zhang Q, Chen W, Jia S, Krishnan P, Wang X. Improvement and Impacts of Forest Canopy Parameters on Noah-MP Land Surface Model from UAV-Based Photogrammetry. Remote Sensing. 2020; 12(24):4120. https://doi.org/10.3390/rs12244120
Chicago/Turabian StyleChang, Ming, Shengjie Zhu, Jiachen Cao, Bingyin Chen, Qi Zhang, Weihua Chen, Shiguo Jia, Padmaja Krishnan, and Xuemei Wang. 2020. "Improvement and Impacts of Forest Canopy Parameters on Noah-MP Land Surface Model from UAV-Based Photogrammetry" Remote Sensing 12, no. 24: 4120. https://doi.org/10.3390/rs12244120
APA StyleChang, M., Zhu, S., Cao, J., Chen, B., Zhang, Q., Chen, W., Jia, S., Krishnan, P., & Wang, X. (2020). Improvement and Impacts of Forest Canopy Parameters on Noah-MP Land Surface Model from UAV-Based Photogrammetry. Remote Sensing, 12(24), 4120. https://doi.org/10.3390/rs12244120