Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Greenhouse Gas Observing Satellite (GOSAT) Observations
2.1.2. Surface, Aircraft, and Ship Observations
2.1.3. Aircraft Observations over India for Validation
2.1.4. Prior Fluxes
2.2. Methods
2.2.1. NIES-TM-FLEXPART-VAR (NTFVAR) Inverse Modeling System
2.2.2. The Inverse Modeling Scheme
2.2.3. Posterior Uncertainties
3. Results
3.1. Posterior Fluxes and Flux Corrections
3.2. Country Total Emissions
3.2.1. Emission from Anthropogenic Sources
3.2.2. Emission from Natural Sources
4. Discussion
4.1. Case of India
4.2. Seasonal Variability in Emission
4.3. Desirable Future Improvements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Station | Observation ID | Lab | Observation Type | Sampling Type |
---|---|---|---|---|
Abbotsford (Canada) | abb006 | ECCC | Station | Continuous |
Arembepe (Brazil) | abp001 | NOAA | Station | Discrete |
Alert (Canada) | alt006 | ECCC | Station | Continuous |
Alert (Canada) | alt001 | NOAA | Station | Discrete |
Amsterdam Island (France) | ams011 | LSCE | Station | Discrete/Continuous |
Argyle (US) | amt001 | NOAA | Station | Discrete |
Anmyeon-do (Republic of Korea) | amy061 | KMA | Station | Continuous |
Aircraft (Western North Pacific) (Japan) | aoa019 | JMA | Aircraft | Discrete (aircraft) |
Arrival Heights (New Zealand) | arh015 | NIWA | Station | Discrete |
Ascension Island (United Kingdom) | asc001 | NOAA | Station | Discrete |
Assekrem (Algeria) | ask001 | NOAA | Station | Discrete |
Amazon Tall Tower Observatory (Brazil) | ato045 | MPI-BGC | Station | Continuous |
Serreta (Portugal) | azr001 | NOAA | Station | Discrete |
Azovo (Russia) | azv | NIES | Station | Continuous |
Baltic Sea (Poland) | bal001 | NOAA | Station | Discrete |
Boulder (US) | bao001 | NOAA | Station | Discrete |
Behchoko (Canada) | beh006 | ECCC | Station | Continuous |
Begur (Spain) | bgu011 | LSCE | Station | Discrete |
Baring Head (New Zealand) | bhd001 | NOAA | Station | Discrete |
Biscarrosse (France) | bis011 | LSCE | Station | Continuous |
Bukit Kototabang (Indonesia) | bkt105 | EMPA | Station | Continuous |
Bukit Kototabang (Indonesia) | bkt001 | NOAA | Station | Discrete |
St. David’s Head (United Kingdom) | bme001 | NOAA | Station | Discrete |
Tudor Hill (Bermuda) (United Kingdom) | bmw001 | NOAA | Station | Discrete |
Bratt’s Lake (Canada) | brl006 | ECCC | Station | Continuous |
Barrow (US) | brw001 | NOAA | Station | Discrete |
Berezorechka (Russia) | brz | NIES | Station | Continuous |
Constanta (Black Sea) (Romania) | bsc001 | NOAA | Station | Discrete |
Pacific Ocean (New Zealand) | bsl015 | NIWA | Ship | Discrete |
Cambridge Bay (Canada) | cab006 | ECCC | Station | Continuous |
Cold Bay (US) | cba001 | NOAA | Station | Discrete |
Cabauw (Netherlands) | cbw196 | RUG | Station | Continuous |
Cape Ferguson (Australia) | cfa002 | CSIRO | Station | Discrete |
Cape Grim (Australia) | cgo001 | NOAA | Station | Discrete |
Cape Grim (Australia) | cgo043 | AGAGE | Station | Continuous |
Chapais (Canada) | cha006 | ECCC | Station | Continuous |
Chibougamau (Canada) | chi006 | ECCC | Station | Continuous |
Christmas Island (Kiribati) | chr001 | NOAA | Station | Discrete |
Cherskii (Russia) | chs001 | NOAA | Station | Discrete |
Churchill (Canada) | chu006 | ECCC | Station | Continuous |
Valladolid (Spain) | cib001 | NOAA | Station | Discrete |
Monte Cimone (Italy) | cmn106 | UNIURB/ISAC | Station | Discrete |
Cape Ochiishi (Japan) | coi020 | NIES | Station | Continuous |
Cape Point (South Africa) | cpt036 | SAWS | Station | Continuous |
Cape Point (South Africa) | cpt001 | NOAA | Station | Discrete |
Cape Rama (India) | cri002 | CSIRO | Station | Discrete |
Crozet (France) | crz001 | NOAA | Station | Discrete |
Casey (Australia) | cya002 | CSIRO | Station | Discrete |
Demyanskoe (Russia) | dem020 | NIES | Station | Continuous |
Downsview (Canada) | dow006 | ECCC | Station | Continuous |
Drake Passage (US) | drp001 | NOAA | Ship | Discrete |
Dongsha Island (Taiwan) | dsi001 | NOAA | Station | Discrete |
Egbert (Canada) | egb006 | ECCC | Station | Continuous |
Easter Island (Chile) | eic001 | NOAA | Station | Discrete |
CONTRAIL (Japan) | eom010 | MRI | Aircraft | Discrete (aircraft) |
Estevan Point (Canada) | esp006 | ECCC | Station | Continuous |
Esther (Canada) | est006 | ECCC | Station | Continuous |
East Trout Lake (Canada) | etl006 | ECCC | Station | Continuous |
Finokalia (Greece) | fik011 | LSCE | Station | Discrete |
Fraserdale (Canada) | fsd006 | ECCC | Station | Continuous |
Gif-sur-Yvette (France) | gif011 | LSCE | Station | Continuous |
Giordan Lighthouse (Malta) | glh209 | UMIT | Station | Continuous |
Guam (US) | gmi001 | NOAA | Station | Discrete |
Gunn Point (Australia) | gpa002 | CSIRO | Station | Discrete |
Gosan (Republic of Korea) | gsn | NIER | Station | Continuous |
Hateruma Island (Japan) | hat020 | NIES | Station | Continuous |
Halley (United Kingdom) | hba001 | NOAA | Station | Discrete |
Hanle (India) | hle011 | LSCE | Station | Discrete |
Hohenpeissenberg (Germany) | hpb001 | NOAA | Station | Discrete |
Hegyhatsal (Hungary) | hun001 | NOAA | Station | Discrete |
Storhofdi (Iceland) | ice001 | NOAA | Station | Discrete |
Igrim (Russia) | igr020 | NIES | Station | Continuous |
Inuvik (Canada) | inu006 | ECCC | Station | Continuous |
Izaña (Spain) | izo001 | NOAA | Station | Discrete |
Izaña (Spain) | izo027 | AEMET | Station | Continuous |
Jungfraujoch (Switzerland) | jfj005 | EMPA | Station | Continuous |
Key Biscane (US) | key001 | NOAA | Station | Discrete |
Kollumerwaard (Netherlands) | kmw196 | RIVM | Station | Continuous |
Karasevoe (Russia) | krs020 | NIES | Station | Continuous |
Cape Kumukahi (US) | kum001 | NOAA | Station | Discrete |
Sary Taukum (Kazakhstan) | kzd001 | NOAA | Station | Discrete |
Plateau Assy (Kazakhstan) | kzm001 | NOAA | Station | Discrete |
Lauder (New Zealand) | lau015 | NIWA | Station | Discrete/Continuous |
Park Falls (US) | lef001 | NOAA | Station | Discrete |
Lac La Biche (Canada) | llb006 | ECCC | Station | Continuous |
Lac La Biche (Canada) | llb001 | NOAA | Station | Discrete |
Lulin (Taiwan) | lln001 | NOAA | Station | Discrete |
Lampedusa (Italy) | lmp001 | NOAA | Station | Discrete |
Lampedusa (Italy) | lmp028 | ENEA | Station | Discrete |
Ile Grande (France) | lpo011 | LSCE | Station | Discrete |
Lamto (Côte d’Ivoire) | lto011 | LSCE | Station | Continuous |
Mawson (Australia) | maa002 | CSIRO | Station | Discrete |
Mex High Altitude Global Climate Observation Center (Mexico) | mex001 | NOAA | Station | Discrete |
Mace Head (Ireland) | mhd001 | NOAA | Station | Discrete |
Mace Head (Ireland) | mhd043 | AGAGE | Station | Continuous |
Sand Island (US) | mid001 | NOAA | Station | Discrete |
Mt. Kenya (Kenya) | mkn001 | NOAA | Station | Discrete |
Mauna Loa (US) | mlo001 | NOAA | Station | Discrete/Continuous |
Minamitorishima (Japan) | mnm019 | JMA | Station | Continuous |
Macquarie Island (Australia) | mqa002 | CSIRO | Station | Discrete |
Mt. Wilson Observatory (US) | mwo001 | NOAA | Station | Discrete |
Natal (Brazil) | nat001 | NOAA | Station | Discrete |
Neuglobsow (Germany) | ngl025 | UBA-Germany | Station | Continuous |
Gobabeb (Namibia) | nmb001 | NOAA | Station | Discrete |
Novosibirsk (Russia) | nov004-070 | NIES | Aircraft | Discrete (aircraft) |
Noyabrsk (Russia) | noy | NIES | Station | Continuous |
Niwot Ridge - T-van (US) | nwr001 | NOAA | Station | Discrete |
Observatoire Pérenne de l’Environnement (France) | ope011 | LSCE | Station | Discrete/Continuous |
Otway (Australia) | ota002 | CSIRO | Station | Discrete |
Ochsenkopf (Germany) | oxk001 | NOAA | Station | Discrete |
Pallas (Finland) | pal001 | NOAA | Station | Discrete |
Pallas (Finland) | pal030 | FMI | Station | Continuous |
Port Blair (India) | pbl011 | LSCE | Station | Discrete |
Pic du Midi (France) | pdm011 | LSCE | Station | Discrete |
Off the coast of Sendai Plain (Japan) | pip008 | TU | Aircraft | Discrete (aircraft) |
Pacific Ocean (US) | poc000-s35 | NOAA | Ship | Discrete |
Pondicherry (India) | pon011 | LSCE | Station | Discrete |
Plateau Rosa (Italy) | prs021 | RSE | Station | Continuous |
Palmer Station (US) | psa001 | NOAA | Station | Discrete |
Point Arena (US) | pta001 | NOAA | Station | Discrete |
Puy de Dôme (France) | puy011 | LSCE | Station | Discrete |
Ragged Point (Barbados) | rpb001 | NOAA | Station | Discrete |
Ragged Point (Barbados) | rpb043 | AGAGE | Station | Continuous |
Ryori (Japan) | ryo019 | JMA | Station | Continuous |
Beech Island (US) | sct001 | NOAA | Station | Discrete |
Shangdianzi (China) | sdz001 | NOAA | Station | Discrete |
Mahé (Seychelles) | sey001 | NOAA | Station | Discrete |
Southern Great Plains (US) | sgp001 | NOAA | Station | Discrete |
Shemya Island (US) | shm001 | NOAA | Station | Discrete |
Samoa (US) | smo001 | NOAA | Station | Discrete |
Samoa (US) | smo043 | AGAGE | Station | Continuous |
Hyytiala (Finland) | smr421 | UHELS | Station | Continuous |
Sonnblick (Austria) | snb211 | EAA | Station | Continuous |
Sinhagad (India) | sng | IITM | Station | Discrete |
Sodankylä (Finland) | sod030 | FMI | Station | Continuous |
South Pole (US) | spo001 | NOAA | Station | Discrete |
Schauinsland (Germany) | ssl025 | UBA-Germany | Station | Continuous |
Sutro Tower (US) | str001 | NOAA | Station | Discrete |
Summit (Denmark) | sum001 | NOAA | Station | Discrete |
Surgut (Russia) | sur005-070 | NIES | Aircraft | Discrete (aircraft) |
Syowa (Japan) | syo001 | NOAA | Station | Discrete |
Tae-ahn Peninsula (Republic of Korea) | tap001 | NOAA | Station | Discrete |
over Japan between Sendai and Fukuoka (Japan) | tda008 | TU | Aircraft | Discrete (aircraft) |
Teriberka (Russia) | ter055 | MGO | Station | Discrete |
Trinidad Head (US) | thd001 | NOAA | Station | Discrete |
Trinidad Head (US) | thd043 | AGAGE | Station | Continuous |
Tiksi (Russia) | tik001 | MGO | Station | Discrete |
Trainou (France) | tr3011 | LSCE | Station | Discrete |
Turkey Point (Canada) | tup006 | ECCC | Station | Continuous |
Ushuaia (Argentina) | ush001 | NOAA | Station | Discrete |
Wendover (US) | uta001 | NOAA | Station | Discrete |
Uto (Finland) | uto030 | FMI | Station | Continuous |
Ulaan Uul (Mongolia) | uum001 | NOAA | Station | Discrete |
Vaganovo (Russia) | vgn | NIES | Station | Continuous |
West Branch (US) | wbi001 | NOAA | Station | Discrete |
Walnut Grove (US) | wgc001 | NOAA | Station | Discrete |
Sede Boker (Israel) | wis001 | NOAA | Station | Discrete |
Moody (US) | wkt001 | NOAA | Station | Discrete |
Mt. Waliguan (China) | wlg001 | NOAA | Station | Discrete |
Mt. Waliguan (China) | wlg033 | CMA/NOAA | Station | Discrete |
Western Pacific (US) | wpc001 | NOAA | Ship | Discrete |
Western Pacific (Japan) | wpsEQ0-S35 | NIES | Ship | Discrete |
Sable Island (Canada) | wsa006 | ECCC | Station | Discrete/Continuous |
Yakutsk (Russia) | yak010-030 | NIES | Station/Aircraft | Continuous/Discrete |
Yonagunijima (Japan) | yon019 | JMA | Station | Continuous |
Zeppelin Mountain (Norway) | zep001 | NOAA | Station | Discrete |
Zotino (Russia) | zot045 | MPI-BGC | Station | Discrete/Continuous |
Zugspitze (Germany) | zsf025 | UBA-Germany | Station | Continuous |
Country Code | Country Name |
---|---|
CHN | China |
USA | United States |
RUS | Russia |
BRA | Brazil |
IND | India |
CAN | Canada |
IDN | Indonesia |
BGD | Bangladesh |
NGA | Nigeria |
PAK | Pakistan |
FRA | France |
AUS | Australia |
DEU | Germany |
GBR | United Kingdom |
JPN | Japan |
THA | Thailand |
MEX | Mexico |
IRN | Iran |
ARG | Argentina |
VEN | Venezuela |
SDN | Sudan |
VNM | Vietnam |
COD | Democratic Republic of the Congo |
MMR | Myanmar |
COL | Colombia |
ETH | Ethiopia |
PRY | Paraguay |
TZA | Tanzania |
TUR | Turkey |
KAZ | Kazakhstan |
PER | Peru |
TCD | Chad |
ZMB | Zambia |
ZAF | South Africa |
IRQ | Iraq |
DZA | Algeria |
KEN | Kenya |
PNG | Papua New Guinea |
SAU | Saudi Arabia |
UKR | Ukraine |
PHL | Philippines |
POL | Poland |
AGO | Angola |
References
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Anthropogenic and Natural Radiative Forcing, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. ISBN 978-1-107-41532-4. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data Discuss. 2019. [Google Scholar] [CrossRef]
- Dzyuba, A.V.; Eliseev, A.V.; Mokhov, I.I. Estimates of changes in the rate of methane sink from the atmosphere under climate warming. Izv.—Atmos. Ocean Phys. 2012, 48, 332–342. [Google Scholar] [CrossRef]
- Smith, K.R.; Jerrett, M.; Anderson, H.R.; Burnett, R.T.; Stone, V.; Derwent, R.; Atkinson, R.W.; Cohen, A.; Shonkoff, S.B.; Krewski, D.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet 2009, 374, 2091–2103. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Tian, H.; Liu, M.; Zhang, C.; Chen, G.; Pan, S.; Felzer, B.; Xu, X. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J. Geophys. Res. Atmos. 2007, 112, D22S09. [Google Scholar] [CrossRef]
- Milne, A.E.; Glendining, M.J.; Lark, R.M.; Perryman, S.A.M.; Gordon, T.; Whitmore, A.P. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture. J. Environ. Manag. 2015, 160, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.M.; Michalak, A.M.; Detmers, R.G.; Hasekamp, O.P.; Bruhwiler, L.M.P.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing emissions. Nat. Commun. 2019, 10, 303. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.J.; Jacob, D.J.; Wecht, K.J.; Maasakkers, J.D.; Lundgren, E.; Andrews, A.E.; Biraud, S.C.; Boesch, H.; Bowman, K.W.; Deutscher, N.M.; et al. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmos. Chem. Phys. 2015, 15, 7049–7069. [Google Scholar] [CrossRef] [Green Version]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2011, 369, 2058–2072. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, E.G.; Dlugokencky, E.J.; Manning, M.R.; Lowry, D.; Fisher, R.E.; France, J.L.; Michel, S.E.; Miller, J.B.; White, J.W.C.; Vaughn, B.; et al. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob. Biogeochem. Cycles 2016, 30, 1356–1370. [Google Scholar] [CrossRef] [Green Version]
- Rigby, M.; Prinn, R.G.; Fraser, P.J.; Simmonds, P.G.; Langenfelds, R.L.; Huang, J.; Cunnold, D.M.; Steele, L.P.; Krummel, P.B.; Weiss, R.F.; et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 2008, 35, L22805. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Turner, A.J.; Frankenberg, C.; Wennberg, P.O.; Jacob, D.J. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl. Acad. Sci. USA 2017, 114, 5367–5372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houweling, S.; Bergamaschi, P.; Chevallier, F.; Heimann, M.; Kaminski, T.; Krol, M.; Michalak, A.M.; Patra, P. Global inverse modeling of CH4 sources and sinks: An overview of methods. Atmos. Chem. Phys. 2017, 17, 235–256. [Google Scholar] [CrossRef] [Green Version]
- Patra, P.K.; Houweling, S.; Krol, M.; Bousquet, P.; Belikov, D.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Corbin, K.; et al. TransCom model simulations of CH4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmos. Chem. Phys. 2011, 11, 12813–12837. [Google Scholar] [CrossRef] [Green Version]
- Ishizawa, M.; Chan, D.; Worthy, D.; Chan, E.; Vogel, F.; Maksyutov, S. Analysis of atmospheric CH4 in Canadian Arctic and estimation of the regional CH4 fluxes. Atmos. Chem. Phys. 2019, 19, 4637–4658. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Danila, A.; Weiss, R.F.; Ciais, P.; Thompson, R.L.; Brunner, D.; Levin, I.; Meijer, Y.; Chevallier, F.; Janssens-Maenhout, G.; et al. Atmospheric Monitoring and Inverse Modelling for Verification of Greenhouse Gas Inventories; EUR 29276 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-88938-7.
- Thompson, R.L.; Patra, P.K.; Chevallier, F.; Maksyutov, S.; Law, R.M.; Ziehn, T.; van der Laan-Luijkx, I.T.; Peters, W.; Ganshin, A.; Zhuravlev, R.; et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016, 7, 10724. [Google Scholar] [CrossRef] [Green Version]
- Patra, P.K.; Canadell, J.G.; Houghton, R.A.; Piao, S.L.; Oh, N.H.; Ciais, P.; Manjunath, K.R.; Chhabra, A.; Wang, T.; Bhattacharya, T.; et al. The carbon budget of South Asia. Biogeosciences 2013, 10, 513–527. [Google Scholar] [CrossRef] [Green Version]
- Patra, P.K.; Saeki, T.; Dlugokencky, E.J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E.A.; Crotwell, A.; et al. Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002–2012). J. Meteorol. Soc. Jpn. 2016, 94, 91–113. [Google Scholar] [CrossRef] [Green Version]
- Henne, S.; Brunner, D.; Oney, B.; Leuenberger, M.; Eugster, W.; Bamberger, I.; Meinhardt, F.; Steinbacher, M.; Emmenegger, L. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmos. Chem. Phys. 2016, 16, 3683–3710. [Google Scholar] [CrossRef] [Green Version]
- Manning, A.J.; O’Doherty, S.; Jones, A.R.; Simmonds, P.G.; Derwent, R.G. Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach. J. Geophys. Res. Atmos. 2011, 116, D02305. [Google Scholar] [CrossRef]
- UNFCCC. Greenhouse Gas Inventory Data; Available online: https://unfccc.int/process-and-meetings/transparency-and-reporting/greenhouse-gas-data/ghg-data-unfccc/ghg-data-from-unfccc (accessed on 20 November 2018).
- Wang, F.; Maksyutov, S.; Tsuruta, A.; Janardanan, R.; Ito, A.; Sasakawa, M.; Machida, T.; Morino, I.; Yoshida, Y.; Kaiser, J.W.; et al. Methane emission estimates by the global high-resolution inverse model using national inventories. Remote Sens. 2019, 11, 2489. [Google Scholar] [CrossRef] [Green Version]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Kuze, A.; Suto, H.; Shiomi, K.; Kawakami, S.; Tanaka, M.; Ueda, Y.; Deguchi, A.; Yoshida, J.; Yamamoto, Y.; Kataoka, F.; et al. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech. 2016, 9, 2445–2461. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Kikuchi, N.; Morino, I.; Uchino, O.; Oshchepkov, S.; Bril, A.; Saeki, T.; Schutgens, N.; Toon, G.C.; Wunch, D.; et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos. Meas. Tech. 2013, 6, 1533–1547. [Google Scholar] [CrossRef]
- Kulkarni, J.R.; Maheskumar, R.S.; Morwal, S.B.; Padma Kumari, B.; Konwar, M.; Deshpande, C.G.; Joshi, R.R.; Bhalwankar, R.V.; Pandithurai, G.; Safai, P.D.; et al. The cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX): Overview and preliminary results. Curr. Sci. 2012, 102, 413–425. [Google Scholar]
- Bera, S.; Prabha, T.V.; Malap, N.; Patade, S.; Konwar, M.; Murugavel, P.; Axisa, D. Thermodynamics and Microphysics Relation During CAIPEEX-I. Pure Appl. Geophys. 2019, 176, 371–388. [Google Scholar] [CrossRef]
- Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C.W.; Crosson, E.R.; Van Pelt, A.D.; Steinbach, J.; Kolle, O.; Beck, V.; et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 2010, 3, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, Y.K.; Valsala, V.; Gupta, S.; Pillai, P.; Ramonet, M.; Lin, X.; Prabhakaran, T.; Murugavel, P. Aircraft observed vertical distributions of atmospheric methane concentration over India. Sci. Rep. 2020. in preparation. [Google Scholar]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J.G.J.; Peters, J.A.H.W.; et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Inatomi, M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 2012, 9, 759–773. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Murthy, T.V.R.; Patel, J.G.; Panigrahy, S.; Parihar, J.S. National Wetland Atlas: Wetlands of International Importance Under Ramsar Convention; Space Applications Centre, ISRO: Ahmedabad, India, 2013; ISBN SAC/EPSA/ABHG/NWIA/ATLAS/38/2013.
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Fung, I.; John, J.; Lerner, J.; Matthews, E.; Prather, M.; Steele, L.P.; Fraser, P.J. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 1991, 96, 13033–13065. [Google Scholar] [CrossRef]
- Lambert, G.; Schmidt, S. Reevaluation of the oceanic flux of methane: Uncertainties and long term variations. Chemosphere 1993, 26, 579–589. [Google Scholar] [CrossRef]
- Etiope, G.; Milkov, A.V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ. Geol. 2004, 46, 997–1002. [Google Scholar] [CrossRef]
- Onogi, K.; Tsutsui, J.; Koide, H.; Sakamoto, M.; kobayashi, S.; Hatsushika, H.; Matsumoto, T.; Yamazaki, N.; Kamahori, H.; Takahashi, K.; et al. The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 2007, 85, 369–432. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Ganshin, A.; Oda, T.; Saito, M.; Maksyutov, S.; Valsala, V.; Andres, R.J.; Fisher, R.E.; Lowry, D.; Lukyanov, A.; Matsueda, H.; et al. A global coupled Eulerian-Lagrangian model and 1×1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations. Geosci. Model Dev. 2012, 5, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Belikov, D.A.; Maksyutov, S.; Yaremchuk, A.; Ganshin, A.; Kaminski, T.; Blessing, S.; Sasakawa, M.J.; Gomez-Pelaez, A.; Starchenko, A. Adjoint of the global Eulerian-Lagrangian coupled atmospheric transport model (A-GELCA v1.0): Development and validation. Geosci. Model Dev. 2016, 9, 749–764. [Google Scholar] [CrossRef] [Green Version]
- Belikov, D.A.; Maksyutov, S.; Sherlock, V.; Aoki, S.; Deutscher, N.M.; Dohe, S.; Griffith, D.; Kyro, E.; Morino, I.; Nakazawa, T.; et al. Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate. Atmos. Chem. Phys. 2013, 13, 1713–1732. [Google Scholar] [CrossRef] [Green Version]
- Meirink, J.F.; Bergamaschi, P.; Krol, M.C. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: Method and comparison with synthesis inversion. Atmos. Chem. Phys. 2008, 8, 6341–6353. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Guerlet, S.; Butz, A.; Houweling, S.; Hasekamp, O.; Aben, I.; Krummel, P.; Steele, P.; Langenfelds, R.; Torn, M.; et al. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmos. Chem. Phys. 2013, 13, 8695–8717. [Google Scholar] [CrossRef] [Green Version]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005; ISBN 0-89871-572-5. [Google Scholar]
- Gilbert, J.C.; Lemaréchal, C. Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program. 1989, 45, 407–435. [Google Scholar] [CrossRef] [Green Version]
- Maksyutov, S.; Oda, T.; Saito, M.; Janardanan, R.; Belikov, D.; Kaiser, J.W.; Zhuravlev, R.; Ganshin, A.; Valsala, V. Technical note: High resolution inverse modelling technique for estimating surface CO2 fluxes based on coupled NIES-TM—Flexpart transport model and its adjoint. Atmos. Chem. Phys. Discuss 2020. in preparation. [Google Scholar]
- Chevallier, F.; Bréon, F.M.; Rayner, P.J. Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. J. Geophys. Res. Atmos. 2007, 112, D09307. [Google Scholar] [CrossRef]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The Global Methane Budget: 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef] [Green Version]
- Maasakkers, J.D.; Jacob, D.J.; Sulprizio, M.P.; Scarpelli, T.R.; Nesser, H.; Sheng, J.-X.; Zhang, Y.; Hersher, M.; Bloom, A.A.; Bowman, K.W.; et al. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmos. Chem. Phys. 2019, 19, 7859–7881. [Google Scholar] [CrossRef] [Green Version]
- Pangala, S.R.; Enrich-prast, A.; Basso, L.S.; Peixoto, R.B.; Bastviken, D.; Marotta, H.; Silva, L.; Calazans, B.; Hornibrook, E.R.C.; Luciana, V.; et al. Large emissions from floodplain trees close the Amazon methane budget. Nature 2017, 552, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Gloor, M.; Gatti, L.V.; Miller, J.B.; Monks, S.A.; McNorton, J.; Bloom, A.A.; Basso, L.S.; Chipperfield, M.P. Contribution of regional sources to atmospheric methane over the Amazon Basin in 2010 and 2011. Glob. Biogeochem. Cycles 2016, 30, 400–420. [Google Scholar] [CrossRef] [Green Version]
- Anthony Bloom, A.; Bowman, W.K.; Lee, M.; Turner, J.A.; Schroeder, R.; Worden, R.J.; Weidner, R.; McDonald, C.K.; Jacob, J.D. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 2017, 10, 2141–2156. [Google Scholar] [CrossRef] [Green Version]
- Lunt, M.F.; Palmer, P.I.; Feng, L.; Taylor, C.M.; Boesch, H.; Parker, R.J. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmos. Chem. Phys. 2019, 19, 14721–14740. [Google Scholar] [CrossRef] [Green Version]
- Tootchi, A.; Jost, A.; Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 2019, 11, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Adam, L.; Döll, P.; Prigent, C.; Papa, F. Global-scale analysis of satellite-derived time series of naturally inundated areas as a basis for floodplain modeling. Adv. Geosci. 2010, 27, 45–50. [Google Scholar] [CrossRef] [Green Version]
- MoEFCC. India: First Biennial Update Report to the UNFCCC; MoEFCC: New Delhi, India, 2015; ISBN 91-1-124695-2.
- Garg, A.; Kankal, B.; Shukla, P.R. Methane emissions in India: Sub-regional and sectoral trends. Atmos. Environ. 2011, 45, 4922–4929. [Google Scholar] [CrossRef]
- Ganesan, A.L.; Rigby, M.; Lunt, M.F.; Parker, R.J.; Boesch, H.; Goulding, N.; Umezawa, T.; Zahn, A.; Chatterjee, A.; Prinn, R.G.; et al. Atmospheric observations show accurate reporting and little growth in India’s methane emissions. Nat. Commun. 2017, 8, 836. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, Y.K.; Vellore, R.K.; Ravi Kumar, K.; van der Schoot, M.; Cho, C.H. Influence of monsoons on atmospheric CO2 spatial variability and ground-based monitoring over India. Sci. Total Environ. 2014, 490, 570–578. [Google Scholar] [CrossRef]
- Tiwari, Y.K.; Patra, P.K.; Chevallier, F.; Francey, R.J.; Krummel, P.B. Carbon dioxide observations at Cape Rama, India for the period of 1993–2002: Implications for constraining Indian emissions. Curr. Sci. 2011, 101, 1562–1568. [Google Scholar]
- Lin, X.; Indira, N.K.; Ramonet, M.; Delmotte, M.; Ciais, P.; Bhatt, B.C.; Reddy, M.V.; Angchuk, D.; Balakrishnan, S.; Jorphail, S.; et al. Long-lived atmospheric trace gases measurements in flask samples from three stations in India. Atmos. Chem. Phys. 2015, 15, 9819–9849. [Google Scholar] [CrossRef] [Green Version]
- MoEFCC. India: Second Biennial Update Report to the UNFCCC; MoEFCC: New Delhi, India, 2018; ISBN 978-81-938531-2-2.
- Agarwal, R.; Garg, J.K. Methane emission modeling from wetlands and waterlogged areas using MODIS data. Curr. Sci. 2009, 96, 36–40. [Google Scholar]
- Baker, A.K.; Schuck, T.J.; Brenninkmeijer, C.A.M.; Rauthe-Schöch, A.; Slemr, F.; Van Velthoven, P.F.J.; Lelieveld, J. Estimating the contribution of monsoon-related biogenic production to methane emissions from South Asia using CARIBIC observations. Geophys. Res. Lett. 2012, 39, L10813. [Google Scholar] [CrossRef]
- Mir, K.A.; Ijaz, M. Greenhouse Gas Emission Inventory of Pakistan for the Year 2011–2012; Global Change Impact Studies Centre, Ministry of Climate Change: Islamabad, Pakistan, 2016; ISBN 978-969-9395-20-8.
- Hayashida, S.; Ono, A.; Yoshizaki, S.; Frankenberg, C.; Takeuchi, W.; Yan, X. Methane concentrations over Monsoon Asia as observed by SCIAMACHY: Signals of methane emission from rice cultivation. Remote Sens. Environ. 2013, 139, 246–256. [Google Scholar] [CrossRef]
- MoECF. Myanmar’s Initial National Communication under The United Nations Framework Convention of Climate Change (UNFCCC); Environmental Division, Planning and Statistics Department, Ministry of Environmental Conservation and Forestry: NayPyiTaw, Myanmar, 2012.
- Peltola, O.; Vesala, T.; Gao, Y.; Räty, O.; Alekseychik, P.; Aurela, M.; Chojnicki, B.; Desai, A.R.; Dolman, A.J.; Euskirchen, E.S.; et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 2019, 11, 1263–1289. [Google Scholar] [CrossRef] [Green Version]
- Bowman, K.P.; Lin, J.C.; Stohl, A.; Draxler, R.; Konopka, P.; Andrews, A.; Brunner, D. Input data requirements for Lagrangian trajectory models. Bull. Am. Meteorol. Soc. 2013, 94, 1051–1058. [Google Scholar] [CrossRef]
- Ware, J.; Kort, E.A.; Duren, R.; Mueller, K.L.; Verhulst, K.; Yadav, V. Detecting Urban Emissions Changes and Events With a Near-Real-Time-Capable Inversion System. J. Geophys. Res. Atmos. 2019, 124, 5117–5130. [Google Scholar] [CrossRef]
- Krol, M.; De Bruine, M.; Killaars, L.; Ouwersloot, H.; Pozzer, A.; Yin, Y.; Chevallier, F.; Bousquet, P.; Patra, P.; Belikov, D.; et al. Age of air as a diagnostic for transport timescales in global models. Geosci. Model Dev. 2018, 11, 3109–3130. [Google Scholar] [CrossRef] [Green Version]
Country Code | Total Prior | Total Posterior | Percentage Difference | Natural Prior | Natural Posterior | Percentage Difference | Anthropogenic Prior | Anthropogenic Posterior | Percentage Difference | Posterior-Prior (Anthropogenic) | Uncertainty (Tg) |
---|---|---|---|---|---|---|---|---|---|---|---|
CHN | 60.1 | 52.0 | −13.5 | 5.8 | 6.3 | 7.7 | 54.3 | 45.7 | −15.8 | −8.6 | 8.6 |
USA | 51.6 | 55.7 | 7.9 | 23.8 | 25.9 | 8.8 | 27.8 | 29.8 | 7.2 | 2.0 | 7.8 |
RUS | 47.8 | 45.2 | −5.5 | 13.6 | 13.2 | −2.7 | 34.2 | 31.9 | −6.6 | −2.3 | 7.8 |
BRA | 45.6 | 56.2 | 23.3 | 29.2 | 39.8 | 36.1 | 16.4 | 16.5 | 0.6 | 0.1 | 10.0 |
IND | 29.9 | 36.5 | 21.9 | 9.9 | 12.3 | 25.2 | 20.1 | 24.2 | 20.4 | 4.1 | 5.3 |
CAN | 23.4 | 16.4 | −29.8 | 19.7 | 12.2 | −37.8 | 3.7 | 4.2 | 12.4 | 0.5 | 4.5 |
IDN | 19.5 | 20.6 | 5.5 | 8.3 | 8.7 | 5.1 | 11.2 | 11.8 | 5.8 | 0.7 | 2.5 |
VEN | 9.2 | 11.6 | 26.0 | 6.1 | 8.3 | 36.3 | 3.1 | 3.2 | 5.3 | 0.2 | 2.0 |
BGD | 8.6 | 11.1 | 29.1 | 4.0 | 5.9 | 46.9 | 4.6 | 5.2 | 13.7 | 0.6 | 1.7 |
NGA | 8.3 | 8.5 | 2.2 | 2.4 | 2.4 | 0.8 | 5.9 | 6.1 | 2.7 | 0.2 | 1.5 |
PAK | 7.7 | 8.0 | 3.0 | 0.6 | 0.6 | 3.6 | 7.2 | 7.4 | 2.9 | 0.2 | 1.0 |
ARG | 7.7 | 7.0 | −9.2 | 3.9 | 3.8 | −3.6 | 3.8 | 3.3 | −14.7 | −0.6 | 1.2 |
SDN | 6.7 | 7.7 | 14.5 | 3.8 | 4.6 | 20.8 | 2.9 | 3.1 | 5.5 | 0.2 | 1.5 |
IRN | 6.4 | 6.3 | −1.6 | 0.8 | 0.8 | 0.0 | 5.6 | 5.5 | −1.8 | −0.1 | 0.8 |
VNM | 6.2 | 6.7 | 8.2 | 2.1 | 2.4 | 14.0 | 4.1 | 4.3 | 5.2 | 0.2 | 1.1 |
COD | 6.0 | 7.2 | 19.9 | 5.0 | 6.2 | 23.0 | 1.0 | 1.0 | 4.1 | 0.0 | 0.9 |
THA | 5.8 | 6.4 | 10.0 | 1.2 | 1.4 | 17.1 | 4.6 | 5.0 | 8.1 | 0.4 | 1.0 |
MEX | 5.5 | 5.8 | 5.3 | 1.0 | 1.1 | 6.1 | 4.5 | 4.7 | 5.4 | 0.2 | 0.9 |
MMR | 5.4 | 6.1 | 13.3 | 2.0 | 2.3 | 19.5 | 3.4 | 3.8 | 10.0 | 0.3 | 0.8 |
COL | 5.1 | 6.1 | 18.8 | 2.4 | 3.2 | 32.8 | 2.7 | 2.9 | 6.6 | 0.2 | 1.1 |
ETH | 4.5 | 4.8 | 7.4 | 0.9 | 1.0 | 16.9 | 3.6 | 3.8 | 5.0 | 0.2 | 0.8 |
PRY | 4.5 | 4.6 | 3.6 | 3.6 | 3.8 | 5.2 | 0.8 | 0.8 | −3.7 | 0.0 | 0.9 |
TZA | 4.3 | 5.0 | 14.8 | 2.8 | 3.4 | 20.3 | 1.5 | 1.6 | 4.6 | 0.1 | 0.6 |
TUR | 3.8 | 3.6 | −4.8 | 0.1 | 0.1 | 0.0 | 3.6 | 3.4 | −5.0 | −0.2 | 0.5 |
KAZ | 3.8 | 3.6 | −6.3 | 0.5 | 0.5 | 0.0 | 3.3 | 3.1 | −7.2 | −0.2 | 0.6 |
PER | 3.8 | 4.7 | 23.0 | 2.9 | 3.7 | 29.5 | 0.9 | 0.9 | 2.2 | 0.0 | 0.6 |
TCD | 3.8 | 4.1 | 9.5 | 3.2 | 3.5 | 10.6 | 0.6 | 0.6 | 3.5 | 0.0 | 0.9 |
ZMB | 3.8 | 4.7 | 23.4 | 3.4 | 4.3 | 26.0 | 0.4 | 0.4 | 2.4 | 0.0 | 0.6 |
ZAF | 3.4 | 3.2 | −4.7 | 0.3 | 0.3 | 0.0 | 3.1 | 2.9 | −5.2 | −0.2 | 0.4 |
IRQ | 2.9 | 2.9 | −1.4 | 0.1 | 0.1 | 0.0 | 2.9 | 2.8 | −1.4 | 0.0 | 0.4 |
DZA | 2.9 | 3.0 | 2.4 | 0.1 | 0.1 | 8.3 | 2.8 | 2.9 | 2.5 | 0.1 | 0.4 |
KEN | 2.9 | 3.2 | 11.8 | 1.1 | 1.4 | 22.3 | 1.8 | 1.9 | 5.7 | 0.1 | 0.4 |
PNG | 2.9 | 3.4 | 14.3 | 2.8 | 3.3 | 14.8 | 0.1 | 0.1 | 0.0 | 0.0 | 0.7 |
SAU | 2.8 | 2.9 | 1.8 | 0.0 | 0.0 | 0.0 | 2.8 | 2.8 | 1.8 | 0.1 | 0.4 |
UKR | 2.8 | 2.4 | −14.5 | 0.2 | 0.2 | −4.4 | 2.6 | 2.2 | −15.8 | −0.4 | 0.4 |
PHL | 2.8 | 2.8 | 1.5 | 0.2 | 0.2 | 4.6 | 2.5 | 2.6 | 1.2 | 0.0 | 0.4 |
POL | 2.7 | 2.5 | −5.3 | 0.0 | 0.0 | 0.0 | 2.6 | 2.5 | −5.3 | −0.1 | 0.4 |
AGO | 2.7 | 3.1 | 12.9 | 2.1 | 2.5 | 16.0 | 0.6 | 0.6 | 1.7 | 0.0 | 0.3 |
FRA | 2.5 | 2.8 | 11.2 | 0.1 | 0.1 | 0.0 | 2.4 | 2.7 | 11.2 | 0.3 | 0.4 |
Global | 551.7 | 573.4 | 3.9 | 209.2 | 232.5 | 11.2 | 342.6 | 340.9 | −0.5 | −1.7 | 22.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janardanan, R.; Maksyutov, S.; Tsuruta, A.; Wang, F.; Tiwari, Y.K.; Valsala, V.; Ito, A.; Yoshida, Y.; Kaiser, J.W.; Janssens-Maenhout, G.; et al. Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sens. 2020, 12, 375. https://doi.org/10.3390/rs12030375
Janardanan R, Maksyutov S, Tsuruta A, Wang F, Tiwari YK, Valsala V, Ito A, Yoshida Y, Kaiser JW, Janssens-Maenhout G, et al. Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sensing. 2020; 12(3):375. https://doi.org/10.3390/rs12030375
Chicago/Turabian StyleJanardanan, Rajesh, Shamil Maksyutov, Aki Tsuruta, Fenjuan Wang, Yogesh K. Tiwari, Vinu Valsala, Akihiko Ito, Yukio Yoshida, Johannes W. Kaiser, Greet Janssens-Maenhout, and et al. 2020. "Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations" Remote Sensing 12, no. 3: 375. https://doi.org/10.3390/rs12030375
APA StyleJanardanan, R., Maksyutov, S., Tsuruta, A., Wang, F., Tiwari, Y. K., Valsala, V., Ito, A., Yoshida, Y., Kaiser, J. W., Janssens-Maenhout, G., Arshinov, M., Sasakawa, M., Tohjima, Y., Worthy, D. E. J., Dlugokencky, E. J., Ramonet, M., Arduini, J., Lavric, J. V., Piacentino, S., ... Matsunaga, T. (2020). Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sensing, 12(3), 375. https://doi.org/10.3390/rs12030375