Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations
Abstract
:1. Introduction
2. Vicarious and Lunar Calibrations for ASTER VNIR
2.1. ASTER VNIR
2.2. Vicarious Calibration Using the Reflectance-Based Method
2.3. Lunar Calibration with the Spectral Profiler Model
3. Radiometric Degradation Curves in the Current Radiometric DB and Its Problems
3.1. Radiometric Degradation Curves
3.2. Problems with the Current Radiometric DB
4. Radiometric Degradation Curves in the Next Radiometric DB
4.1. Selection of the Calibration Approach
4.2. Radiometric Degradation Curves
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Uncertainty of R(d) | Duration (d:DSL) | Band 1 | Band 2 | Band 3N | Band 3B |
---|---|---|---|---|---|
ur | 0 ≤ d ≤ 3000 | 0.0053 | 0.0056 | 0.0076 | 0.0089 |
3000 < d | 0.0072 | 0.0065 | 0.0064 | 0.0067 | |
us | Independent to d | 0.020 | 0.020 | 0.020 | 0.020 |
uc | 0 ≤ d ≤ 3000 | 0.021 | 0.021 | 0.022 | 0.022 |
3000 < d | 0.021 | 0.021 | 0.021 | 0.021 |
Appendix B
Appendix C
References
- Yamaguchi, Y.; Kahle, A.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- ASTER Science Office ASTER SWIR Data Status Report. Available online: http://www.aster.jspacesystems.or.jp/en/about_aster/swir_en.pdf (accessed on 9 December 2019).
- Ono, A.; Sakuma, F.; Arai, K.; Yamaguchi, Y.; Fujisada, H.; Slater, P.N.; Thome, K.J.; Palluconi, F.; Kieffer, H. Preflight and in-flight calibration plan for ASTER. J. Atmos. Ocean. Technol. 1996, 13, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, F.; Ono, A.; Tsuchida, S.; Ohgi, N.; Inada, H.; Akagi, S.; Ono, H. Onboard calibration of the ASTER instrument. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2715–2724. [Google Scholar] [CrossRef]
- Thome, K.; Arai, K.; Tsuchida, S.; Biggar, S. Vicarious calibration of ASTER via the reflectance-based approach. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3285–3295. [Google Scholar] [CrossRef]
- Kouyama, T.; Kato, S.; Kikuchi, M.; Sakuma, F.; Miura, A.; Tachikawa, T.; Tsuchida, S.; Obata, K.; Nakamura, R. Lunar Calibration for ASTER VNIR and TIR with Observations of the Moon in 2003 and 2017. Remote Sens. 2019, 11, 2712. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Kamei, A.; Nakamura, R.; Tsuchida, S. Long-term cross-calibration of the Terra ASTER and MODIS over the CEOS calibration sites. Proc. SPIE 2011, 8153, 815318. [Google Scholar]
- McCorkel, J. Cross-calibration of Earth Observing System Terra satellite sensors MODIS and ASTER. Proc. SPIE 2014, 9218, 92180X. [Google Scholar]
- Thome, K.; McCorkel, J.; Czapla-Myers, J. In-situ transfer standard and coincident-view intercomparisons for sensor cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1088–1097. [Google Scholar] [CrossRef]
- Yuan, K.; Thome, K.; Mccorkel, J. Radiometric cross-calibration of Terra ASTER and MODIS. Proc. SPIE 2015, 9607, 1–9. [Google Scholar]
- Obata, K.; Tsuchida, S.; Yamamoto, H.; Thome, K. Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration. Sensors 2017, 17, 1793. [Google Scholar] [CrossRef] [Green Version]
- Obata, K.; Tsuchida, S.; Iwao, K. Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands. Remote Sens. 2015, 7, 15140–15160. [Google Scholar] [CrossRef] [Green Version]
- ASTER Science Team. Algorithm Theoretical Basis Document for ASTER Level-1 Data Processing (Ver. 3.0); ASTER Science Team, Japan: Tokyo, Japan, 1996; Available online: http://www.aster.jspacesystems.or.jp/en/documnts/pdf/1a1b.pdf (accessed on 9 December 2019).
- Sakuma, F.; Kikuchi, M.; Inada, H.; Akagi, S.; Ono, H. Onboard calibration of the ASTER instrument over twelve years. Proc. SPIE 2012, 8533, 853305. [Google Scholar]
- ASTER User’s Guide Part I General (Ver.4.0). Earth Remote Sensing Data Analysis Center. 2005. Available online: http://www.aster.jspacesystems.or.jp/en/documnts/users_guide/part1/pdf/Part1_4E.pdf (accessed on 9 December 2019).
- Tsuchida, S.; Yamamoto, H.; Kamei, A. Long-term vicarious calibration of ASTER VNIR bands. In Proceedings of the 52nd Conference of the Remote Sensing Society of Japan, Tokyo, Japan, 23–24 May 2012; pp. 85–86, (In Japanese with English abstract). [Google Scholar]
- Tachikawa, T. ASTER Science Team Meeting. Earth Obs. 2014, 26, 18–21. [Google Scholar]
- Slater, P.; Biggar, S.; Holm, R.; Jackson, R.; Mao, Y.; Moran, M.; Palmer, J.; Yuan, B. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens. Environ. 1987, 22, 11–37. [Google Scholar] [CrossRef]
- Slater, P.; Biggar, S.; Thome, K.; Gelman, D.; Spyak, P. Vicarious Radiometric Calibration of EOS Sensors. J. Atmos. Oceanic Technol. 1996, 13, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, S.; Sato, I.; Yamaguchi, Y.; Arai, K.; Takashima, T. Vicarious calibration in the visible to infrared region based on reflectance-based method at the snow fields in Hokkaido. J. Remote Sens. Soc. Jpn. 1998, 18, 12–31, (In Japanese with English abstract). [Google Scholar]
- Liu, C.-C.; Kamei, A.; Hsu, K.-H.; Tsuchida, S.; Huang, H.-M.; Kato, S.; Nakamura, R.; Wu, A.-M. Vicarious calibration of the Formosat-2 remote sensing instrument. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2162–2169. [Google Scholar]
- Kamei, A.; Nakamura, K.; Yamamoto, H.; Nakamura, R.; Tsuchida, S.; Yamamoto, N.; Sekiguchi, S.; Kato, S.; Liu, C.C.; Hsu, K.H.; et al. Cross calibration of formosat-2 Remote Sensing Instrument (RSI) using Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 2012, 50, 4821–4831. [Google Scholar] [CrossRef]
- Working with ASTER L1T Visible and Near Infrared (VNIR) Data in R. Available online: https://lpdaac.usgs.gov/resources/e-learning/working-aster-l1t-visible-and-near-infrared-vnir-data-r/ (accessed on 9 December 2019).
- Thome, K.J.; Biggar, S.F.; Slater, P.N. Effects of assumed solar spectral irradiance on intercomparisons of Earth-observing sensors. In Sensors, Systems, and Next-Generation Satellites V; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4540, pp. 260–269. [Google Scholar] [CrossRef]
- Kieffer, H.; Stone, T. The spectral irradiance of the Moon. Astron. J. 2005, 129, 2887–2901. [Google Scholar] [CrossRef] [Green Version]
- Yokota, Y.; Matsunaga, T.; Ohtake, M.; Haruyama, J.; Nakamura, R.; Yamamoto, S.; Ogawa, Y.; Morota, T.; Honda, C.; Saiki, K.; et al. Lunar photometric properties at wavelengths 0.5-1.6 μm acquired by SELENE Spectral Profiler and their dependency on local albedo and latitudinal zones. Icarus 2011, 215, 639–660. [Google Scholar] [CrossRef]
- Kouyama, T.; Yokota, Y.; Ishihara, Y.; Nakamura, R.; Yamamoto, S.; Matsunaga, T. Development of an application scheme for the SELENE/SP lunar reflectance model for radiometric calibration of hyperspectral and multispectral Sensors. Planet. Space Sci. 2016, 214, 76–83. [Google Scholar] [CrossRef]
- Tsuchida, S.; Sakuma, F.; Iwasaki, A.; Ogi, N.; Inada, H. Degradation models and functions for ASTER/VNIR sensor. In Proceedings of the 38th Conference of the Remote Sensing Society of Japan, Chiba, Japan, 20 May 2005; pp. 99–100, (In Japanese with English abstract). [Google Scholar]
- Yamamoto, H.; Kamai, A.; Nakamura, R.; Tsuchida, S. Radiometric evaluation of ASTER VNIR/SWIR bands be long-term Terra ASTER/MODIS cross-calibration over CEOS Reference Test Sites. In Proceedings of the 52nd Conference of the Remote Sensing Society of Japan, Tokyo, Japan, 23–24 May 2012; pp. 87–88, (In Japanese with English abstract). [Google Scholar]
- Yamamoto, H.; Koyama, T.; Nakamura, R.; Tsuchida, S. Status of ASTER/HISUI radiometric calibration—Vicarious calibration and cross-calibration. In CEOS IVOS 25th Meeting; ESA ESRIN: Frascati, Italy, 2013; Available online: http://calvalportal.ceos.org/ceos-wgcv/ivos/ivos25 (accessed on 5 December 2019).
- Sakuma, F.; Kikuchi, M.; Inada, H. Onboard electrical calibration of the ASTER VNIR. Proc. SPIE 2013, 8889, 888903. [Google Scholar]
- Abrams, M.; Yamaguchi, Y. ASTER Science Team Meeting. Earth Obs. 2019, 31, 21–27. [Google Scholar]
- Slater, P.; Biggar, S.; Palmer, J.; Thome, K. Unified approach to absolute radiometric calibration in the solar-reflective range. Remote Sens. Environ. 2001, 77, 293–303. [Google Scholar] [CrossRef]
- Biggar, S.; Slater, P.; Gellman, D. Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4–1.1 m range. Remote Sens. Environ. 1994, 48, 245–252. [Google Scholar] [CrossRef]
- Ono, A.; Arai, K. Radiometric calibration of spaceborne optical sensors, lecture series 5: Integrating analysis of calibration data. J. Remote Sens. Soc. Jpn. 2017, 37, 375–384. (In Japanese) [Google Scholar]
- Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute Radiometric Calibration of Landsat Using a Pseudo Invariant Calibration Site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
Band | Relative Sensor Sensitivity Degradation (RDL) Degradation Ratio: RCC (6440)/RCC (1213) |
---|---|
1 | 0.969 |
2 | 0.948 |
3N | 0.942 |
3B | 0.968 |
Band | Duration (d: DSL) | Equation (R(d): RCC) | Coefficients | ||
---|---|---|---|---|---|
a0 | a1 | a2 | |||
1 | whole duration | 0.990 | 0.794 | 0.00181 | |
2 | whole duration | 0.949 | 0.886 | 0.00181 | |
3N | d < 673 | 0.9817 | |||
673 ≤ d < 4825 | See Table 3 | ||||
4825 ≤ d | 0.8259 | - | - | ||
3B | whole duration | 1.000 | - | - |
Band | Duration (d: DSL) | Equation (R(d): RCC) | Coefficients | ||
---|---|---|---|---|---|
a0 | a1 | a2 | |||
3N | 673 ≤ d < 2394 | 0.8599 | 0.2163 | 0.0014974 | |
2394 ≤ d < 3123 | 0.8590 | 0.5750 | 0.0019668 | ||
3123 ≤ d < 3857 | 0.8428 | 0.1054 | 0.0006679 | ||
3857 ≤ d < 4450 | 0.8310 | 0.1176 | 0.0005303 | ||
4450 ≤ d < 4825 | 0.7086 | 0.2051 | 0.0001096 |
Band | Duration (d: DSL) | Equation (R(d): RCC) | Coefficients | ||
---|---|---|---|---|---|
a0 | a1 | a2 | |||
1 | 0 ≤ d ≤ 3000 | 1.017 | 0.7730 | 0.001791 | |
3000 < d | 0.7869 | - | - | ||
2 | 0 ≤ d ≤ 3000 | 1.008 | 0.8016 | 0.001114 | |
3000 < d | 0.8152 | - | - | ||
3N | 0 ≤ d ≤ 3000 | 0.9849 | 0.8192 | 0.0008238 | |
3000 < d | 0.8218 | - | - | ||
3B | 0 ≤ d ≤ 3000 | 0.9762 | 0.9009 | 0.0003670 | |
3000 < d | 0.9116 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchida, S.; Yamamoto, H.; Kouyama, T.; Obata, K.; Sakuma, F.; Tachikawa, T.; Kamei, A.; Arai, K.; Czapla-Myers, J.S.; Biggar, S.F.; et al. Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations. Remote Sens. 2020, 12, 427. https://doi.org/10.3390/rs12030427
Tsuchida S, Yamamoto H, Kouyama T, Obata K, Sakuma F, Tachikawa T, Kamei A, Arai K, Czapla-Myers JS, Biggar SF, et al. Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations. Remote Sensing. 2020; 12(3):427. https://doi.org/10.3390/rs12030427
Chicago/Turabian StyleTsuchida, Satoshi, Hirokazu Yamamoto, Toru Kouyama, Kenta Obata, Fumihiro Sakuma, Tetsushi Tachikawa, Akihide Kamei, Kohei Arai, Jeffrey S. Czapla-Myers, Stuart F. Biggar, and et al. 2020. "Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations" Remote Sensing 12, no. 3: 427. https://doi.org/10.3390/rs12030427
APA StyleTsuchida, S., Yamamoto, H., Kouyama, T., Obata, K., Sakuma, F., Tachikawa, T., Kamei, A., Arai, K., Czapla-Myers, J. S., Biggar, S. F., & Thome, K. J. (2020). Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations. Remote Sensing, 12(3), 427. https://doi.org/10.3390/rs12030427