Patterns of Historical and Future Urban Expansion in Nepal
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Data
2.3. Urban Expansion Orientation
2.4. Projecting Future Land-Cover Change
3. Results
3.1. Historical Land-Cover Change Transitions (1986–2016)
3.2. Urban-Expansion Orientation
3.3. Land-Cover Change Simulation and Projections to 2026 and 2036
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 2018, 14, 034008. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- UNDESA. World Urbanization Prospects: The 2018 Revision; United Nation Development of Economic and Social Affairs, United Nation: Bangkok, Thailand, 2018. [Google Scholar]
- IPBES. Ipbes global assessment on biodiversity and ecosystem services. In Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES); IPBES: Paris, France, 2019. [Google Scholar]
- Van Ginkel, H. Urban future. Nature 2008, 456, 32. [Google Scholar] [CrossRef]
- Dewan, A.M.; Corner, R.J. Spatiotemporal analysis of urban growth, sprawl and structure. In Dhaka Megacity, Geospatial Perspectives on Urbanization, Environment and Health; Springer: New York, NY, USA, 2013. [Google Scholar]
- d’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Zhao, S.; Da, L.; Tang, Z.; Fang, H.; Song, K.; Fang, J. Ecological consequences of rapid urban expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linard, C.; Tatem, A.J.; Gilbert, M. Modelling spatial patterns of urban growth in africa. Appl. Geogr. (Sevenoaksengland) 2013, 44, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Henderson, V. Urbanization in developing countries. World Bank Res. Obs. 2002, 17, 89–112. [Google Scholar] [CrossRef]
- Bhattarai, K.; Conway, D. Urban vulnerabilities in the kathmandu valley, Nepal: Visualizations of human/hazard interactions. J. Geogr. Inf. Syst. 2010, 02, 63–84. [Google Scholar] [CrossRef] [Green Version]
- MoFALD. Local Level Reconstruction Report; Ministry of Federal Affairs and Local Development (MoFALD), Nepal Government: Kathmandu, Nepal, 2017.
- Rimal, B.; Keshtkar, H.; Sharma, R.; Stork, N.; Rijal, S.; Kunwar, R. Simulating urban expansion in a rapidly changing landscape in eastern tarai, nepal. Environ. Monit. Assess. 2019, 191, 255. [Google Scholar] [CrossRef] [PubMed]
- MoUD. National urban Development Strategy (NUDS) 2015; Government of Nepal, Ministry of Urban Development: Kathmandu, Nepal, 2015.
- WHO. Nepal Malaria Programme Review World Health Organization (WHO); Regional Office for South-East Asia Ed: New Delhi, India, 2011. [Google Scholar]
- Shrestha, N.R. Landlessness and Migration in Nepal; Westview Press: Oxford, UK, 1990. [Google Scholar]
- Muzzini, E.; Gabriela, A. Urban Growth and Spatial Transition in Nepal; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Gartaula, H.; Niehof, A. Migration to and from the terai: Shifting movements and motives. Southasianist 2013, 2, 29–51. [Google Scholar]
- Rimal, B.; Zhang, L.; Stork, N.; Sloan, S.; Rijal, S. Urban expansion occurred at the expense of agricultural lands in the tarai region of Nepal from 1989 to 2016. Sustainability 2018, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and gis to detect and monitor land use and land cover change in dhaka metropolitan of bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Sun, X.; Rijal, S. Quantifying the spatiotemporal pattern of urban expansion and hazard and risk area identification in the kaski district of nepal. Land 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Rijal, S.; Rimal, B.; Sloan, S. Flood hazard mapping of a rapidly urbanizing city in the foothills (birendranagar, surkhet) of Nepal. Land 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the koshi river basin, eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.; Basnet, L. Land use and land cover dynamics and assessing the ecosystem service values in the trans-boundary gandaki river basin, central himalayas. Sustainability 2018, 10, 3052. [Google Scholar] [CrossRef] [Green Version]
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and gis techniques—A case study of a hilly area, jiangle, china. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef]
- Eastman, J.R.; van Fossen, M.E.; Solarzano, L.A. Transition Potential Modeling for Land-Cover Change, 1st ed.; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Sloan, S.; Zamora Pereira, J.C.; Labbate, G.; Asner, G.P.; Imbach, P. The cost and distribution of forest conservation for national emissions reductions. Glob. Environ. Chang. 2018, 53, 39–51. [Google Scholar] [CrossRef]
- Alqurashi, A.F.; Kumar, L.; Sinha, P. Urban land cover change modelling using time-series satellite images: A case study of urban growth in five cities of saudi arabia. Remote Sens. 2016, 8, 838. [Google Scholar] [CrossRef] [Green Version]
- Tallis, H.; Polasky, S. Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann. N. Y. Acad. Sci. 2009, 1162, 265–283. [Google Scholar] [CrossRef]
- Rodrigues, H.; Soares-Filho, B. A short presentation of dinamica ego. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 493–498. [Google Scholar]
- Clarke, K.C. Land use change modeling with sleuth: Improving calibration with a genetic algorithm. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 139–161. [Google Scholar]
- Theobald, D. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol. Soc. 2005, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Overmars, K.P. Dynamic simulation of land-use change trajectories with the clue-s model. In Modelling Land-Use Change: Progress and Applications; Koomen, E., Stillwell, J., Bakema, A., Scholten, H.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 321–337. [Google Scholar]
- Sloan, S.; Pelletier, J. How accurately may we project tropical forest-cover change? Glob. Environ. Chang. 2012, 22, 440–453. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Wood, N.J.; Soulard, C.E.; Wilson, T.S. Projecting community changes in hazard exposure to support long-term risk reduction: A case study of tsunami hazards in the U.S. Pacific northwest. Int. J. Disaster Risk Reduct. 2017, 22, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, R.; Zheng, X.Q. Simulating land use change by integrating ann-ca model and landscape pattern indices. Geomat. Nat. Hazards Risk 2016, 7, 918–932. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.-F.; Tsou, K.-W. Modeling and simulation of the future impacts of urban land use change on the natural environment by sleuth and cluster analysis. Sustainability 2018, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, A.; Fresco, L.O. Clue: A conceptual model to study the conversion of land use and its effects. Ecol. Model. 1996, 85, 253–270. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Darvishi Boloorani, A. Integration of logistic regression, markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Pahlavani, P.; Askarian Omran, H.; Bigdeli, B. A multiple land use change model based on artificial neural network, markov chain, and multi objective land allocation. Earth Obs. Geomat. Eng. 2017, 1, 82–99. [Google Scholar]
- Sangermano, F.; Toledano, J.; Eastman, R. Land cover change in the bolivian amazon and implications for redd+ and endemic biodiversity. Land 2012, 27, 571–584. [Google Scholar] [CrossRef]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-markov chain analysis for land use and land cover change prediction in patna district (bihar), India. Arab. J. Geosci. 2016, 9, 249. [Google Scholar] [CrossRef]
- Ozturk, D. Urban growth simulation of atakum (samsun, turkey) using cellular automata-markov chain and multi-layer perceptron-markov chain models. Remote Sens. 2015, 7, 5918–5950. [Google Scholar] [CrossRef] [Green Version]
- Riccioli, F.; El Asmar, T.; El Asmar, J.-P.; Fagarazzi, C.; Casini, L. Artificial neural network for multifunctional areas. Environ. Monit. Assess. 2015, 188, 67. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, K.; Johnson, B.A.; Onishi, A.; Magcale-Macandog, D.B.; Endo, I.; Bragais, M. Modeling future urban sprawl and landscape change in the laguna de bay area, philippines. Land 2017, 6, 26. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, G.; Clarke, K. The sleuth land use change model: A review. Int. J. Environ. Resour. Res. 2013, 1, 88–105. [Google Scholar]
- Nurwanda, A.; Honjo, T. The prediction of city expansion and land surface temperature in bogor city, indonesia. Sustain. Cities Soc. 2020, 52, 101772. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in kathmandu valley, nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Haack, B.N.; Rafter, A. Urban growth analysis and modeling in the kathmandu valley, nepal. Habitat Int. 2006, 30, 1056–1065. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Wang, N.; Lin, Y. Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated markov chain cellular automata model. Isprs Int. J. Geo-Inf. 2017, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, H.; Voigt, W. A spatiotemporal analysis of landscape change using an integrated markov chain and cellular automata models. Modeling Earth Syst. Environ. 2015, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Qi, L.; Zeng, C. A partitioned and asynchronous cellular automata model for urban growth simulation. Int. J. Geogr. Inf. Sci. 2016, 30, 637–659. [Google Scholar] [CrossRef]
- Kityuttachai, K.; Tripathi, N.; Tipdecho, T.; Shrestha, R. Ca-markov analysis of constrained coastal urban growth modeling: Hua hin seaside city, thailand. Sustainability 2013, 5, 1480–1500. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Lu, Q.; Chang, N.-B.; Joyce, J.; Chen, A.S.; Savic, D.A.; Djordjevic, S.; Fu, G. Exploring the potential climate change impact on urban growth in london by a cellular automata-based markov chain model. Comput. Environ. Urban Syst. 2017, 68, 121–132. [Google Scholar] [CrossRef]
- Han, Y.; Jia, H. Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of foshan, china. Ecol. Model. 2017, 353, 107–116. [Google Scholar] [CrossRef]
- Haack, B. A history and analysis of mapping urban expansion in the kathmandu valley, Nepal. Cartogr. J. 2009, 46, 233–241. [Google Scholar] [CrossRef]
- Paudel, B.; Gao, J.; Zhang, Y.; Wu, X.; Li, S.; Yan, J. Changes in cropland status and their driving factors in the koshi river basin of the central himalayas, nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Rimal, B.; Baral, H.; Nehren, U.; Paudyal, K.; Sharma, S.; Rijal, S.; Ranpal, S.; Acharya, R.P.; Alenazy, A.A.; et al. Impact of land cover change on ecosystem services in a tropical forested landscape. Resources 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, M. Historical land covers change in the chure-tarai landscape in the last six decades: Drivers and environmental consequences. In Land cover Change and Its Eco-Environmental Responses in Nepal; Li, A., Deng, W., Zhao, W., Eds.; Springer: Singapore, 2017; pp. 109–147. [Google Scholar]
- Li, A.; Lei, G.; Cao, X.; Zhao, W.; Deng, W.; Lal Koirala, H. Land Cover Change and Its Driving Forces in Nepal Since 1990; Springer: Singapore, 2017; pp. 41–65. [Google Scholar]
- Li, A.; Deng, W. Land use/cover change and its eco-environmental responses in nepal: An overview. In Land Cover Change and Its Eco-Environmental Responses in Nepal; Li, A., Deng, W., Zhao, W., Eds.; Springer: Singapore, 2017; pp. 1–13. [Google Scholar]
- Thapa, R.B.; Murayama, Y. Drivers of urban growth in the kathmandu valley, nepal: Examining the efficacy of the analytic hierarchy process. Appl. Geogr. 2010, 30, 70–83. [Google Scholar] [CrossRef]
- Ishtiaque, A.; Shrestha, M.; Chhetri, N. Rapid urban growth in the kathmandu valley, Nepal: Monitoring land use land cover dynamics of a himalayan city with landsat imageries. Environments 2017, 4, 72. [Google Scholar] [CrossRef]
- Id, M. Simulation and prediction of land surface temperature (lst) dynamics within ikom city in Nigeria using artificial neural network (ann). J. Remote Sens. Gis 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Puertas, O.L.; Henríquez, C.; Meza, F.J. Assessing spatial dynamics of urban growth using an integrated land use model. Application in santiago metropolitan area, 2010–2045. Land Use Policy 2014, 38, 415–425. [Google Scholar] [CrossRef]
- CBS. Population Monograph of Nepal; National Planning Commission Secretariat, Central Bureau of Statistics (CBS): Kathmandu, Nepal, 2014. [Google Scholar]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Feng, G.; Kutler, J.; Teng-Kui, L. A landsat surface reflectance dataset for north america, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the landsat 8/oli land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.B. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 1996. [Google Scholar]
- Jensen, J.R. Spectral and textural features to classify elusive land cover at the urban fringe. Prof. Geogr. 1979, 31, 400–409. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, B.; Kurban, A. Trajectory analysis of land cover change in arid environment of china. Int. J. Remote Sens. 2008, 29, 1093–1107. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.-G.; Chen, M.-N.; Ma, W.-C. Land use dynamics of the fast-growing shanghai metropolis, china (1979–2008) and its implications for land use and urban planning policy. Sensors 2011, 11, 1794–1809. [Google Scholar] [CrossRef] [Green Version]
- GoN. Topographical Map; Government of Nepal, Ministry of Land Reform and Management, Survey Department, Topographic Survey Branch: Kathmandu, Nepal, 1995.
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Eastman, J.R. Manual for Using Terrset; Clark Labs, Clark University: Worcester, MA, USA, 2018. [Google Scholar]
- Mas, J.-F.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, H.; Voigt, W. Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multi-temporal satellite imagery with gis-based cellular automata model. Ecol. Inform. 2016, 32, 145–155. [Google Scholar] [CrossRef]
- Zawadzka, J.; Mayr, T.; Bellamy, P.; Corstanje, R. Comparing physiographic maps with different categorisations. Geomorphology 2015, 231, 94–100. [Google Scholar] [CrossRef]
- Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using cellular automata and artificial neural network: The case of chunati wildlife sanctuary, bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr. Quantification error versus location error in comparison of categorical maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Pontius, R.G.; Peethambaram, S.; Castella, J.-C. Comparison of three maps at multiple resolutions: A case study of land change simulation in cho don district, vietnam. Ann. Assoc. Am. Geogr. 2011, 101, 45–62. [Google Scholar] [CrossRef]
- Varga, O.G.; Pontius, R.G.; Singh, S.K.; Szabó, S. Intensity analysis and the figure of merit’s components for assessment of a cellular automata—Markov simulation model. Ecol. Indic. 2019, 101, 933–942. [Google Scholar] [CrossRef]
- Araya, Y.H.; Cabral, P. Analysis and modeling of urban land cover change in setúbal and sesimbra, portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Cornell, J.D.; Hall, C.A.S. Modeling the spatial pattern of land-use change with geomod2: Application and validation for costa rica. Agric. Ecosyst. Environ. 2001, 85, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; Ahmed, R. Modeling urban land cover growth dynamics using multi-temporal satellite images: A case study of dhaka, bangladesh. ISPRS Int. J. Geo-Inf. 2012, 1, 3–31. [Google Scholar] [CrossRef] [Green Version]
- Shafizadeh Moghadam, H.; Helbich, M. Spatiotemporal urbanization processes in the megacity of mumbai, india: A markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Rudel, T.K.; Meyfroidt, P.; Chazdon, R.; Bongers, F.; Sloan, S.; Grau, H.R.; Van Holt, T.; Schneider, L. Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio 2019, 49, 74–84. [Google Scholar] [CrossRef]
- Sloan, S. The development-driven forest transition and its utility for redd+. Ecol. Econ. 2015, 116, 1–11. [Google Scholar] [CrossRef]
- Sloan, S.; Meyfroidt, P.; Rudel, T.K.; Bongers, F.; Chazdon, R. The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Chang. 2019, 59, 101988. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Yin, D.; Liu, Z. Planning urban landscape to maintain key ecosystem services in a rapidly urbanizing area: A scenario analysis in the beijing-tianjin-hebei urban agglomeration, China. Science 2018, 96, 559–571. [Google Scholar] [CrossRef]
- MoAD. Statistical Information on Nepalese Agriculture Time Series Information, 1999/2000–2011/2012; Government of Nepal Ministry of Agriculture and Development: Kathmandu, Nepal, 2013. [Google Scholar]
- King, L.J.; Golledge, R.G. Cities, Space and Behaviour: The Elements of Urban Geography; Prentice Hall International: Hemel Hempstead, UK, 1978. [Google Scholar]
- Wu, Y.; Zhang, X.; Shen, L. The impact of urbanization policy on land use change: A scenario analysis. Cities 2011, 28, 147–159. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, H.; Zhang, X. Sustainable urbanization in china: A comprehensive literature review. Cities 2016, 55, 82–93. [Google Scholar] [CrossRef]
- Pérez-Vega, A.; Mas, J.-F.; Ligmann-Zielinska, A. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environ. Model. Softw. 2012, 29, 11–23. [Google Scholar] [CrossRef]
Driving Factor | Cramer’s Value |
---|---|
Distance to built-up areas | 0.261 |
Distance to cultivated lands | 0.309 |
Distance to vegetated areas (forest) | 0.184 |
Distance to roads | 0.199 |
Distance to water bodies | 0.078 |
Elevation | 0.277 |
Slope | 0.168 |
Distance to barren lands | 0.081 |
Distance to sand areas | 0.114 |
LULC Classes | 1989–1996 | 1996–2001 | 2001–2006 | 2006–2011 | 2011–2016 | 1989–2016 |
---|---|---|---|---|---|---|
Urban/built-up | 11.64 | 32.89 | 44.29 | 119.45 | 47.63 | 255.9 |
Cultivated land | 67.01 | −53.64 | −97.45 | −115.22 | −50.17 | −249.47 |
Vegetation cover | −44.54 | −11.5 | 24.84 | 20.09 | 23.88 | 12.77 |
Barren land | −14.07 | 7.05 | 1.26 | 3.17 | −27.42 | −30.01 |
Sand cover | −5.53 | 53.18 | 14.42 | −31.31 | 18.56 | 49.32 |
Water body | −14.51 | −27.98 | 12.64 | 3.82 | −12.48 | −38.51 |
LULC Classes | Area (km2) | Percentage Increase * | ||||
---|---|---|---|---|---|---|
2016 | 2026 | 2036 | 2016–2026 | 2026–2036 | 2016–2036 | |
Urban/built-up | 327.05 | 526.05 | 691.20 | 60.85 | 31.39 | 111.34 |
Cultivated land | 7163.65 | 6786.45 | 6508.96 | −5.26 | −4.1 | −9.14 |
Vegetation cover | 10,472.18 | 10,657.89 | 10,720.12 | 1.77 | 0.58 | 2.37 |
Barren land | 58.28 | 47.95 | 53.92 | −17.72 | 12.45 | −7.48 |
Sand cover | 898.55 | 888.67 | 961.13 | −1.1 | 8.15 | 6.96 |
Water body | 270.07 | 282.59 | 254.27 | 4.64 | −10.0 | −5.85 |
Year | 2026 | |||||||
---|---|---|---|---|---|---|---|---|
2016 | LULC | U/B | CL | VC | BL | SC | WB | Total |
U/B | 314.93 | 3.06 | 5.97 | 0 | 2.24 | 0.84 | 327.04 | |
CL | 197.39 | 6591.02 | 310.27 | 0 | 44.15 | 20.82 | 7163.65 | |
VC | 11.97 | 165.61 | 10,240.43 | 8.63 | 40.05 | 5.48 | 10,472.17 | |
BL | 0.03 | 0 | 17.7 | 38.58 | 1.64 | 0.26 | 58.21 | |
SC | 1.66 | 26.75 | 72.49 | 0.39 | 707.11 | 90.14 | 898.54 | |
WB | 0.06 | 0.02 | 11.02 | 0.34 | 93.48 | 165.05 | 269.97 | |
Total | 526.04 | 6786.46 | 10,657.88 | 47.94 | 888.67 | 282.59 | 19,189.58 |
Year | 2036 | |||||||
---|---|---|---|---|---|---|---|---|
2026 | LULC | U/B | CL | VC | BL | SC | WB | Total |
U/B | 518.92 | 2.72 | 1.65 | 0 | 2.66 | 0.09 | 526.04 | |
CL | 156.76 | 6307.74 | 234 | 2.44 | 83.53 | 1.96 | 6786.43 | |
VC | 12.24 | 162 | 10,424.59 | 11.72 | 39.11 | 7.8 | 10,657.46 | |
BL | 0 | 0.01 | 9.86 | 37.74 | 0.08 | 0.23 | 47.92 | |
SC | 1.86 | 19.13 | 35.31 | 1.71 | 743.25 | 87.38 | 888.64 | |
WB | 1.42 | 16.92 | 14.68 | 0.28 | 92.47 | 156.78 | 282.55 | |
Total | 691.2 | 6508.52 | 10,720.09 | 53.89 | 961.1 | 254.24 | 19,189.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimal, B.; Sloan, S.; Keshtkar, H.; Sharma, R.; Rijal, S.; Shrestha, U.B. Patterns of Historical and Future Urban Expansion in Nepal. Remote Sens. 2020, 12, 628. https://doi.org/10.3390/rs12040628
Rimal B, Sloan S, Keshtkar H, Sharma R, Rijal S, Shrestha UB. Patterns of Historical and Future Urban Expansion in Nepal. Remote Sensing. 2020; 12(4):628. https://doi.org/10.3390/rs12040628
Chicago/Turabian StyleRimal, Bhagawat, Sean Sloan, Hamidreza Keshtkar, Roshan Sharma, Sushila Rijal, and Uttam Babu Shrestha. 2020. "Patterns of Historical and Future Urban Expansion in Nepal" Remote Sensing 12, no. 4: 628. https://doi.org/10.3390/rs12040628
APA StyleRimal, B., Sloan, S., Keshtkar, H., Sharma, R., Rijal, S., & Shrestha, U. B. (2020). Patterns of Historical and Future Urban Expansion in Nepal. Remote Sensing, 12(4), 628. https://doi.org/10.3390/rs12040628