Modelling and Terrestrial Laser Scanning Methodology (2009–2018) on Debris Cones in Temperate High Mountains
Abstract
:1. Introduction
2. Study Area
3. Data Collection and Methodology
3.1. Data Collection by TLS
3.2. Dynamic Data Analysis with TLS
3.3. Mathematical Modelling
3.4. Volumetric Analysis
- Interval from −0.02 m to 0.02 m; this is the error of measurement generated by the technical characteristics of the instruments;
- Intervals from −0.02 m to −0.15 m and from 0.02 m to 0.15 m; the value of 0.15 m is the maximum difference generated in the DEMs on the same cone and in the same observation survey;
- Intervals from −0.15 m to −0.30 m and from 0.15 m to 0.30 m; up to 0.30 m is the value of the material gain or loss of each of the cones normally in annual periods;
- Intervals from −0.30 m to −1 m and from 0.30 m to 1 m; differences in the measurement on rocks with dimensions close to 1 m;
- Intervals greater than those between −1 m and 1 m; large blocks (greater than a meter). Errors in the edges in generating the DEMs.
4. Results
4.1. Calculation of the Slope of the Cones
4.2. Calculation of the Dynamic
4.3. Mathematical Prediction
4.3.1. Result of Profile 3 of the Maximum Slope of Cone A
- The functional root-mean-squared error obtained is
- The functional mean absolute error is
4.3.2. Result of Profile 3 of the Maximum Slope of Cone B
- The functional root-mean-squared error obtained is
- The functional mean absolute error is
4.4. Calculation of the Volume
4.4.1. Volume Calculation of Cone A
4.4.2. Volume Calculation of Cone B
5. Discussion
- Debris cones maintain the equilibrium or maximum slope. Both measured cones have the same slope at the central portion (33.62° in Cone A, 33.54° in Cone B) (Figure 4). Evidently, the slope tends to be lesser in the distal portion;
- The wavy profile implies variations from one year to the next at the same point (Figure 5). The line of maximum slope sometimes shows alternative thinning and thickening areas (Figure 7). The periods of annual thickening and thinning show a minimum of five periods of each (accumulation and loss) for the total of nine periods studied (2010–2009, …, 2018–2017) (Figure 6). These facts show a wave behavior on the surface of the cones, particularly in Cone B;
- The analogical interpretation of the profiles of maximum slope analyzed (Figure 6) is as follows:
- The heterogeneous variation in the profiles shows annual changes with thinning preceded or followed by years defined by thickening. The analysis of pairs of years (Figure 7) shows a compensating tendency, with periods alternating between thickening and thinning. These profiles are symmetrical around a value of 0;
- There are not more than three consecutive periods (columns) of accumulation or loss for the same distance interval. This corroborates the observation made in the previous point, which is that there is no continuity over time of thickening or thinning in certain areas;
- Figure 5 illustrates sequences of over five annual periods with continuous values of thickening “U” (purple lines) or thinning “D” (yellow lines). Sequence D (yellow line) in Figure 6 shows that the thinning at 80 and 90 m from the origin of the profile in the 2010–2009 period is found 10 m further back (now at 70–80 m) in the following period (2011–10). This process continues until 2015–2014 for a distance interval of 30–40 m. The wavy profile may be interpreted as creep on the surface, producing thickening and leaving thinning up and down. This process takes place continuously until the profile becomes stable (Figure 15).
- The prediction of profile 3 of Cone B is less precise than that obtained in profile 3 of Cone A. In this case, the method is sensitive to some exceptional event (displacement of large blocks) in the distal portion, as can be seen in Figure 11. This lack of precision may also be due to the greater difference between the curves (prediction and measured) in profile 3 of Cone B (Figure 11) than in profile 3 of Cone A (Figure 9). Figure 10 (Cone A) shows differences of +7 cm and −15 cm and Figure 12 (Cone B) differences of +16 cm and −27 cm;
- Cone A has a highly homometric texture with differences of less than 15 cm between the two curves (Figure 10). The overall average of the whole fit is 5 cm;
- The texture of Cone B is more heterometric, with large blocks mainly in the distal part, which has led to differences of 27 cm between the predictive curve for 2018 and the real measurement (Figure 12). The overall average of the whole fit is 11 cm;
- The curve of Cone A is of higher quality than that of Cone B, as the fit of Cone A is close to the precision of the equipment (2 cm). The curves of both cones are below the error produced in the generation of the DEM, which is 15 cm. It can be expected that with the increase in the number of field measurements, since only 10 years of measurements are available, the predictive curve will fit better to that measured. This must happen whenever there are no extraordinary events, such as large landslides or rockfalls, of which there were none during the studied period (2009–2018).
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rapp, A.; Fairbridge, R.W. Talus fan or cone. In Encyclopaedia of Geomorphology; Fairbridge, R.W., Goudie, A.S., Eds.; International Association of Geomorphologists: New York, NY, USA, 1968; pp. 1106–1109. ISBN 0-415-27298-X. [Google Scholar]
- Guillien, Y. Les grèzes litées de Charente. Rev. Géographique des Pyrénées du Sud-Ouest. Sud-Ouest Eur. 1951, 22, 154–162. [Google Scholar] [CrossRef]
- Rapp, A. Recent development of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geogr. Ann. 1960, 42, 65–200. [Google Scholar]
- Caine, N. The geomorphic processes of the alpine environment. In Arct. Alp. Environ; Methuen: North Yorkshire, UK, 1974; pp. 721–748. [Google Scholar]
- Luckman, B. Debris accumulation patterns on talus slopes in Surprise Valley, Alberta. Géographie Phys. Quat. 1988, 42, 247–278. [Google Scholar] [CrossRef] [Green Version]
- Kotarba, A.; Klapa, M.; Midriak, R.; Petras, J.; Sroka, J. Field experiments on high mountain slopes of the Tatra Mts. Stud. Geomorphol. Carpato-Balcanica Krakow 1979, 13, 131–148. [Google Scholar]
- Kotarba, A.; Kaszowski, L.; Krzemień, K. High-Mountain Denudational System of the Polish Tatra Mountains; Ossolineum: Wroclaw, Poland, 1987; ISBN 8304026503. [Google Scholar]
- Francou, B. Pentes, granulométrie et mobilité des matériaux le long d’un talus d’éboulis en milieu alpin. Permafr. Periglac. Processes 1991, 2, 175–186. [Google Scholar] [CrossRef]
- Van Steijn, H.; Bertran, P.; Francou, B.; Texier, J.; Hétu, B. Models for the genetic and environmental interpretation of stratified slope deposits. Permafr. Periglac. Processes 1995, 6, 125–146. [Google Scholar] [CrossRef]
- Hinchliffe, S. Timing and significance of talus slope reworking, Trotternish, Skye, northwest Scotland. Holocene 1999, 9, 483–494. [Google Scholar] [CrossRef]
- Caine, N. A model for alpine talus slope development by slush avalanching. J. Geol. 1969, 77, 92–100. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Statham, I. Surface stone movement and scree formation. J. Geol. 1975, 83, 349–362. [Google Scholar] [CrossRef]
- Gardner, J.S. The movement of material on debris slopes in the Canadian Rocky Mountains. Zeitschrift für Geomorphol. 1979, 23, 45–57. [Google Scholar]
- Gardner, J.S. Accretion rates on some debris slopes in the Mt. Rae area, Canadian Rocky Mountains. Earth Surf. Processes Landf. 1983, 8, 347–355. [Google Scholar] [CrossRef]
- Selby, M.J. Hillslope Materirals and Processes; Oxford University Press: Oxford, UK, 1982; p. 264. [Google Scholar]
- Statham, I. A scree slope rockfall model. Earth Surf. Processes 1976, 1, 43–62. [Google Scholar] [CrossRef]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Slaymaker, O. Mountain geomorphology: A theoretical framework for measurement programmes. Catena 1991, 18, 427–437. [Google Scholar] [CrossRef]
- Schrott, L.; Adams, T. Quantifying sediment storage and Holocene denudation in an Alpine basin, Dolomites, Italy. Zeitschrift für Geomorphol. Suppl. 2002, 128, 129–145. [Google Scholar]
- Schrott, L.; Hufschmidt, G.; Hankammer, M.; Hoffmann, T.; Dikau, R. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 2003, 55, 45–63. [Google Scholar] [CrossRef]
- Otto, J.; Schrott, L.; Jaboyedoff, M.; Dikau, R. Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 2009, 34, 1726–1742. [Google Scholar] [CrossRef]
- Goetz, J.; Otto, J.-C.; Schrott, L. Postglacial sediment storage and rockwall retreat in a semi-closed inner-Alpine sedimentary basin (Gradenmoos, Hohe Tauern, Austria). Geogr. Fis. e Din. Quat. 2013, 36, 63–80. [Google Scholar]
- Becht, M.; Haas, F.; Heckmann, T.; Wichmann, V. Investigating sediment cascades using field measurements and spatial modelling. In Proceedings of the Sediment Budgets; International Assn of Hydrological Sciences: Foz do Iguaçu, Brazil, 2005; Volume 291, pp. 206–213. [Google Scholar]
- Reynard, E.; Lambiel, C.; Lane, S.N. Climate change and integrated analysis of mountain geomorphological systems. Geogr. Helv. 2012, 67, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Papa, M.N.; Sarno, L.; Ciervo, F.; Barba, S.; Fiorillo, F.; Limongiello, M. Field surveys and numerical modeling of pumiceous debris flows in Amalfi Coast (Italy). Int. J. Eros. Control Eng. 2016, 9, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Sass, O.; Krautblatter, M. Debris flow-dominated and rockfall-dominated talus slopes: Genetic models derived from GPR measurements. Geomorphology 2007, 86, 176–192. [Google Scholar] [CrossRef]
- Serrano, E.; Sanjosé, J.J.; Gómez-Gutiérrez, Á.; Gómez-Lende, M. Surface movement and cascade processes on debris cones in temperate high mountain (Picos de Europa, northern Spain). Sci. Total Environ. 2019, 649, 1323–1337. [Google Scholar] [CrossRef] [PubMed]
- Hétu, B.; Vandelac, P. La dynamique des éboulis schisteux au cours de l’hiver, Gaspésie septentrionale, Québec. Géographie Phys. Quat. 1989, 43, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Hétu, B. Évolution récente d’un talus d’éboulis en milieu forestier, Gaspésie, Québec. Géographie Phys. Quat. 1990, 44, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Hétu, B. Le litage des Éboulis Stratifiés Cryonivaux en Gaspésie (Québec, Canada): Rǒle de la Sédimentation Nivéo-Éolienne et des Transits Supranivaux. Permafr. Periglac. Processes 1995, 6, 147–171. [Google Scholar] [CrossRef]
- Carson, M.A. Angles of repose, angles of shearing resistance and angles of talus slopes. Earth Surf. Processes 1977, 2, 363–380. [Google Scholar] [CrossRef]
- Bithell, M.; Richards, K.S.; Bithell, E.G. Simulation of scree-slope dynamics: Investigating the distribution of debris avalanche events in an idealized two-dimensional model. Earth Surf. Processes Landf. 2014, 39, 1601–1610. [Google Scholar] [CrossRef] [Green Version]
- Bosq, D. Linear Processes in Function Spaces: Theory and Applications; Springer Science & Business Media: New York, NY, USA, 2000; Volume 149, ISBN 1461211549. [Google Scholar]
- Ramsay, J.O.; Silverman, B.W. Functional Data Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Mas, A.; Pumo, B. Linear processes for functional data. arXiv 2009, arXiv:0901.2503. [Google Scholar]
- Castañón Álvarez, J.C.; Frochoso Sánchez, M. La alta montaña cantábrica: Condiciones térmicas y morfodinámica en los Picos de Europa. In Procesos biofísicos actuales en medios fríos: Estud. Recientes; Universitat de Barcelona: Barcelona, Spain, 1998. [Google Scholar]
- Serrano Cañadas, E.; González Trueba, J.J. Morfodinámica periglaciar en el grupo Peña Vieja (Macizo Central de los Picos de Europa-Cantabria). Cuaternario y Geomorfología 2004, 18, 73–88. [Google Scholar]
- González Trueba, J.J. El paisaje natural del Macizo Central de los Picos de Europa; Centro de Investigación del Medio Ambiente (CIMA), Consejería de Medio Ambiente del Gobierno de Cantabria: Santander, Spain, 2007; ISBN 978-84-935670-3-3. [Google Scholar]
- González Trueba, J.J. Geomorfología del Macizo Central del Parque Nacional de Picos de Europa [con mapa geomorfológico del Macizo Central de Picos de Europa E 1: 25.000]; OAPN-Ministerio de Medio Ambiente: Madrid, Spain, 2007; ISBN 8480147008. [Google Scholar]
- Pisabarro, A.; Pellitero, R.; Serrano, E.; Gómez-Lende, M.; González-Trueba, J.J. Ground temperatures, landforms and processes in an Atlantic mountain. Cantabrian Mountains (Northern Spain). Catena 2017, 149, 623–636. [Google Scholar] [CrossRef] [Green Version]
- González-Trueba, J.J.; Serrano Cañadas, E. La nieve en los Picos de Europa: Implicaciones geomorfológicas y ambientales. Cuad. Investig. Geográfica Geogr. Res. Lett. 2010, 36, 61–84. [Google Scholar] [CrossRef] [Green Version]
- González Trueba, J.J.; Serrano Cañadas, E. Geomorfología del macizo oriental del Parque Nacional de Picos de Europa; Organismo Autónomo Parques Nacionales: Madrid, Spain, 2010; ISBN 848014775X. [Google Scholar]
- Serrano, E.; González-trueba, J.J.; Sanjosé, J.J.; Del Rio, L.M. Ice patch origin, evolution and dynamics in a temperate high mountain environment: The Jou Negro, Picos de Europa (NW Spain). Geogr. Ann. Ser. A Phys. Geogr. 2011, 93, 57–70. [Google Scholar] [CrossRef]
- Serrano Cañadas, E.; González Trueba, J.J. La dinámica geomorfológica actual de alta montaña y montaña media. In Geomorfología del Macizo Occidental del Parque Nacional de Picos de Europa; OAPN-Ministerio de Medio Ambiente: Madrid, Spain, 2010; pp. 79–108. [Google Scholar]
- Farias, P. La estructura del sector central de los Picos de Europa. Trab. Geol. 1982, 12, 63–73. [Google Scholar]
- Marquínez, J. Síntesis cartográfica de la región del Cuera y los Picos de Europa. Trab. Geol. 1989, 18, 137–145. [Google Scholar]
- Marquínez, J. Tectónica y relieve en la Cornisa Cantábrica. Late Quat. West. Pyrenean Reg. 1992, 1, 141–157. [Google Scholar]
- Serrano, E.; González-Trueba, J.J.; González-García, M. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quat. Res. 2012, 78, 303–314. [Google Scholar] [CrossRef]
- Serrano, E.; González-Trueba, J.J.; Pellitero, R.; Gómez-Lende, M. Quaternary glacial history of the Cantabrian Mountains of northern Spain: A new synthesis. Geol. Soc. Lond. Spec. Publ. 2017, 433, 55–85. [Google Scholar] [CrossRef]
- González Trueba, J.J.; Gómez Lende, M.; González García, M.; Serrano, E. Mapa Geomorfológico de la Orla Sur del Parque Nacional de los Picos de Europa; OAPN-Ministerio de Medio Ambiente: Madrid, Spain, 2012; ISBN 848014775X. [Google Scholar]
- Didericksen, D.; Kokoszka, P.; Zhang, X. Empirical properties of forecasts with the functional autoregressive model. Comput. Stat. 2011, 27, 285–298. [Google Scholar] [CrossRef]
- De Sanjosé, J.J.; Berenguer, F.; Atkinson, A.D.J.; De Matías, J.; Serrano, E.; Gómez-Ortiz, A.; González-García, M.; Rico, I. Geomatics techniques applied to glaciers, rock glaciers, and ice patches in Spain (1991–2012). Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 307–321. [Google Scholar] [CrossRef]
- Gardner, J.S. Debris Slope Form and Processes in the Lake Louise District: A High Mountain Area. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1968. [Google Scholar]
- Van Steijn, H. Debris flows involved in the development of Pleistocene stratified slope deposits. Z. Geomorphol. Suppl. 1988, 71, 45–58. [Google Scholar]
- Luckman, B. Talus Slopes. In The Encyclopedia of Quaternary Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3, pp. 566–573. [Google Scholar]
- De Blasio, F.V.; Sæter, M. Small-scale experimental simulation of talus evolution. Earth Surf. Processes Landf. 2009, 34, 1685–1692. [Google Scholar] [CrossRef]
- Bertran, P.; Hetu, B.; Teixier, J.; Van Stejn, H. Fabric characteristics of subaerial slope deposits. Sedimentology 1997, 44, 1–16. [Google Scholar] [CrossRef]
Distance | Difference | Distance | Difference | Distance | Difference | Distance | Difference | Distance | Difference | Distance | Difference |
---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) |
1 | −0.138 | 26 | −0.042 | 51 | −0.059 | 76 | 0.019 | 101 | −0.065 | 126 | 0.058 |
2 | −0.133 | 27 | −0.026 | 52 | −0.050 | 77 | 0.026 | 102 | −0.057 | 127 | 0.028 |
3 | −0.128 | 28 | −0.029 | 53 | −0.049 | 78 | 0.037 | 103 | −0.054 | 128 | 0.011 |
4 | −0.125 | 29 | −0.030 | 54 | −0.047 | 79 | 0.048 | 104 | −0.040 | 129 | 0.000 |
5 | −0.118 | 30 | −0.048 | 55 | −0.034 | 80 | 0.047 | 105 | −0.027 | 130 | 0.004 |
6 | −0.113 | 31 | −0.046 | 56 | −0.019 | 81 | 0.041 | 106 | −0.014 | 131 | 0.011 |
7 | −0.107 | 32 | −0.036 | 57 | −0.004 | 82 | 0.030 | 107 | 0.000 | 132 | 0.005 |
8 | −0.080 | 33 | −0.018 | 58 | 0.008 | 83 | 0.022 | 108 | 0.002 | 133 | −0.010 |
9 | −0.065 | 34 | 0.001 | 59 | 0.012 | 84 | 0.012 | 109 | −0.008 | 134 | −0.050 |
10 | −0.062 | 35 | 0.010 | 60 | 0.010 | 85 | 0.000 | 110 | −0.005 | 135 | −0.091 |
11 | −0.060 | 36 | 0.016 | 61 | 0.009 | 86 | −0.012 | 111 | −0.012 | 136 | −0.113 |
12 | −0.057 | 37 | 0.021 | 62 | 0.006 | 87 | −0.017 | 112 | −0.028 | 137 | −0.125 |
13 | −0.066 | 38 | 0.035 | 63 | 0.005 | 88 | −0.028 | 113 | −0.039 | 138 | −0.135 |
14 | −0.076 | 39 | 0.047 | 64 | 0.006 | 89 | −0.055 | 114 | −0.037 | 139 | −0.136 |
15 | −0.088 | 40 | 0.017 | 65 | 0.013 | 90 | −0.090 | 115 | −0.017 | 140 | −0.138 |
16 | −0.106 | 41 | −0.030 | 66 | 0.023 | 91 | −0.123 | 116 | −0.013 | 141 | −0.143 |
17 | −0.124 | 42 | −0.013 | 67 | 0.032 | 92 | −0.130 | 117 | −0.004 | 142 | −0.148 |
18 | −0.141 | 43 | −0.020 | 68 | 0.030 | 93 | −0.134 | 118 | 0.005 | 143 | −0.147 |
19 | −0.156 | 44 | −0.030 | 69 | 0.005 | 94 | −0.138 | 119 | 0.018 | 144 | −0.131 |
20 | −0.129 | 45 | −0.043 | 70 | −0.018 | 95 | −0.133 | 120 | 0.030 | 145 | −0.111 |
21 | −0.121 | 46 | −0.061 | 71 | −0.007 | 96 | −0.128 | 121 | 0.047 | 146 | −0.095 |
22 | −0.098 | 47 | −0.077 | 72 | 0.004 | 97 | −0.121 | 122 | 0.055 | 147 | −0.089 |
23 | −0.084 | 48 | −0.080 | 73 | 0.010 | 98 | −0.112 | 123 | 0.061 | 148 | −0.091 |
24 | −0.069 | 49 | −0.079 | 74 | 0.012 | 99 | −0.107 | 124 | 0.065 | 149 | −0.081 |
25 | −0.055 | 50 | −0.073 | 75 | 0.017 | 100 | −0.081 | 125 | 0.069 | 150 | −0.066 |
Years | Cone A (m3) | Cone B (m3) |
---|---|---|
2010‒2009 | −2407 | 1074 |
2011‒2010 | 2568 | 970 |
2012‒2011 | 454 | 2170 |
2013‒2012 | −2195 | −663 |
2014‒2013 | 1701 | 1090 |
2015‒2014 | −117 | −2494 |
2016‒2015 | −137 | 3707 |
2017‒2016 | 828 | −1500 |
2018‒2017 | −180 | −396 |
2018‒2009 | 515 | 3958 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sanjosé-Blasco, J.J.; López-González, M.; Alonso-Pérez, E.; Serrano, E. Modelling and Terrestrial Laser Scanning Methodology (2009–2018) on Debris Cones in Temperate High Mountains. Remote Sens. 2020, 12, 632. https://doi.org/10.3390/rs12040632
de Sanjosé-Blasco JJ, López-González M, Alonso-Pérez E, Serrano E. Modelling and Terrestrial Laser Scanning Methodology (2009–2018) on Debris Cones in Temperate High Mountains. Remote Sensing. 2020; 12(4):632. https://doi.org/10.3390/rs12040632
Chicago/Turabian Stylede Sanjosé-Blasco, José Juan, Mariló López-González, Estrella Alonso-Pérez, and Enrique Serrano. 2020. "Modelling and Terrestrial Laser Scanning Methodology (2009–2018) on Debris Cones in Temperate High Mountains" Remote Sensing 12, no. 4: 632. https://doi.org/10.3390/rs12040632
APA Stylede Sanjosé-Blasco, J. J., López-González, M., Alonso-Pérez, E., & Serrano, E. (2020). Modelling and Terrestrial Laser Scanning Methodology (2009–2018) on Debris Cones in Temperate High Mountains. Remote Sensing, 12(4), 632. https://doi.org/10.3390/rs12040632