New Insights in Regional Climate Change: Coupled Land Albedo Change Estimation in Greenland from 1981 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Materials
2.2.1. Observed Datasets
2.2.2. Simulated Datasets
2.3. Methods
3. Results
3.1. Seasonal Spatial Distribution in Albedo
3.2. Seasonal Trend in Albedo
3.3. Interannual Trend in Albedo
3.4. Coupled near Surface Temperature and Albedo
3.5. A Prevailing Analysis in Detection and Attribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Golledge, N.R.; Keller, E.D.; Gomez, N.; Naughten, K.A.; Bernales, J.; Trusel, L.D.; Edwards, T.L. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 2019, 566, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.G. The Role of Snow and Ice in the Global Climate System: A Review. Polar Geogr. 2002, 26, 235–246. [Google Scholar] [CrossRef]
- Bergmann, I.; Ramillien, G.; Frappart, F. Climate-driven interannual ice mass evolution in Greenland. Glob. Planet. Chang. 2012, 82, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, E.; Hopcroft, P.O.; Valdes, P.J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci. Data 2019, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liang, S.L.; Cao, Y.F.; He, T.; Wang, D.D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contosta, A.R.; Casson, N.J.; Garlick, S.; Nelson, S.J.; Ayres, M.P.; Burakowski, E.A.; Campbell, J.; Creed, I.; Eimers, C.; Evans, C.; et al. Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. Ecol. Appl. 2019, 29, 1–24. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Mapping Greenland’s mass loss in space and time. Proc. Natl. Acad. Sci. USA 2012, 109, 19934–19937. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, W.A.; Painter, T.H.; Ferrenberg, H.; Belnap, J.; Okin, G.S.; Flagg, C.; Reed, S.C. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci. Rep. 2017, 7, 44188. [Google Scholar] [CrossRef] [Green Version]
- Noël, B.; van de Berg, W.J.; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J.M.T.; van den Broeke, M.R. A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps. Nat. Commun. 2017, 8, 14730. [Google Scholar] [CrossRef]
- Tilling, R.L.; Ridout, A.; Shepherd, A.; Wingham, D.J. Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 2015, 8, 643–646. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.C.; Smith, L.C.; van As, D.; Cooley, S.W.; Cooper, M.G.; Pitcher, L.H.; Hubbard, A. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 2019, 5, eaav3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moustafa, S.E.; Rennermalm, A.K.; Román, M.O.; Wang, Z.; Schaaf, C.B.; Smith, L.C.; Koenig, L.S.; Erb, A. Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens. Environ. 2017, 198, 115–125. [Google Scholar] [CrossRef]
- Van Tricht, K.; Lhermitte, S.; Lenaerts, J.T.M.; Gorodetskaya, I.V.; L’ Ecuyer, T.S.; Noël, B.; van den Broeke, M.R.; Turner, D.D.; van Lipzig, N.P.M. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 2016, 7, 10266. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Phipps, S.J.; Pitman, A.J.; Hirsch, A.L.; Davin, E.L.; Donat, M.G.; Hirschi, M.; Lenton, A.; Wilhelm, M.; Kravitz, B. Pacific Northwest National Lab. PNNL, Richland WA United States Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 2018, 11, 88–96. [Google Scholar] [CrossRef]
- Hall, A. The Role of Surface Albedo Feedback in Climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.T.; Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 2017, 552, 45–50. [Google Scholar] [CrossRef]
- Charlson, R.J.; Valero, F.P.J. Albedo-watching satellite needed to monitor change. Nature 2008, 451, 887. [Google Scholar]
- McConnell, J.R.; Arthern, R.J.; Mosley-Thompson, E.; Davis, C.H.; Bales, R.C.; Thomas, R.; Burkhart, J.F.; Kyne, J.D. Changes in Greenland ice sheet elevation attributed primarily to snow accumulation variability. Nature 2000, 406, 877–879. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Knutti, R. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 2008, 1, 735–743. [Google Scholar]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, E.; Magazù, S. Correlation between Increases of the Annual Global Solar Radiation and the Ground Albedo Solar Radiation due to Desertification—A Possible Factor Contributing to Climatic Change. Climate 2016, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, I.D.; Nienow, P.; Sole, A.; Mair, D.; Cowton, T.; King, M.A.; Palmer, S. Seasonal variations in Greenland Ice Sheet motion: Inland extent and behaviour at higher elevations. Earth Planet Sci. Lett. 2011, 307, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Larsen, N.K.; Levy, L.B.; Carlson, A.E.; Buizert, C.; Olsen, J.; Strunk, A.; Bjørk, A.A.; Skov, D.S. Instability of the Northeast Greenland Ice Stream over the last 45,000 years. Nat. Commun. 2018, 9, 1872. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Noone, D.C.; Steen-Larsen, H.C.; Bailey, A.; Cox, C.J.; O’Neill, M.S.; Schneider, D.; Steffen, K.; White, J.W.C. Surface-atmosphere decoupling limits accumulation at Summit, Greenland. Sci. Adv. 2016, 2, e1501704. [Google Scholar] [CrossRef] [Green Version]
- Hofer, S.; Tedstone, A.J.; Fettweis, X.; Bamber, J.L. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv. 2017, 3, e1700584. [Google Scholar] [CrossRef] [Green Version]
- Kobashi, T.; Menviel, L.; Jeltsch-Thömmes, A.; Vinther, B.M.; Box, J.E.; Muscheler, R.; Nakaegawa, T.; Pfister, P.L.; Döring, M.; Leuenberger, M.; et al. Volcanic influence on centennial to millennial Holocene Greenland temperature change. Sci. Rep. 2017, 7, 1441. [Google Scholar] [CrossRef]
- Niwano, M.; Hashimoto, A.; Aoki, T. Cloud-driven modulations of Greenland ice sheet surface melt. Sci. Rep. 2019, 9, 10380. [Google Scholar] [CrossRef]
- Dumont, M.; Brun, E.; Picard, G.; Michou, M.; Libois, Q.; Petit, J.-R.; Geyer, M.; Morin, S.; Josse, B. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci. 2014, 7, 509–512. [Google Scholar] [CrossRef]
- Ryan, J.C.; Hubbard, A.; Stibal, M.; Irvine-Fynn, T.D.; Cook, J.; Smith, L.C.; Cameron, K.; Box, J. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nat. Commun. 2018, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Skiles, S.M.; Flanner, M.; Cook, J.M.; Dumont, M.; Painter, T.H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Chang. 2018, 8, 964–971. [Google Scholar] [CrossRef]
- Han, C.; Do Hur, S.; Han, Y.; Lee, K.; Hong, S.; Erhardt, T.; Fischer, H.; Svensson, A.M.; Steffensen, J.P.; Vallelonga, P. High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Sci. Rep. 2018, 8, 15582. [Google Scholar] [CrossRef]
- Boetius, A.; Anesio, A.M.; Deming, J.W.; Mikucki, J.A.; Rapp, J.Z. Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nat. Rev. Microbiol. 2015, 13, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, M.F.; Baccolo, G.; Blunier, T.; Borunda, A.; Delmonte, B.; Frei, R.; Goldstein, S.; Grinsted, A.; Kjaer, H.A.; Sowers, T.; et al. East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nat. Commun. 2019, 10, 4494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The Impact of Boreal Forest Fire on Climate Warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Loboda, T.V.; He, T.; Zhang, Y.; Liang, S. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Sci. Rep. 2018, 8, 4821. [Google Scholar] [CrossRef]
- Rogozhina, I.; Petrunin, A.G.; Vaughan, A.P.M.; Steinberger, B.; Johnson, J.V.; Kaban, M.K.; Calov, R.; Rickers, F.; Thomas, M.; Koulakov, I. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nat. Geosci. 2016, 9, 366–369. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, B.; Liang, S.; Wang, D.; He, T.; Wang, Q.; Zhao, X.; Xu, J. Surface Shortwave Net Radiation Estimation from Landsat TM/ETM+ Data Using Four Machine Learning Algorithms. Remote Sens. 2019, 11, 2847. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. J. Am. Econ. Sociol. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- de Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Swann, A.L.; Fung, I.Y.; Levis, S.; Bonan, G.B.; Doney, S.C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl. Acad. Sci. USA 2010, 107, 1295–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacFerrin, M.; Machguth, H.; As, D.V.; Charalampidis, C.; Stevens, C.M.; Heilig, A.; Vandecrux, B.; Langen, P.L.; Mottram, R.; Fettweis, X.; et al. Rapid expansion of Greenland’s low-permeability ice slabs. Nature 2019, 573, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Bowling, J.S.; Livingstone, S.J.; Sole, A.J.; Chu, W. Distribution and dynamics of Greenland subglacial lakes. Nat. Commun. 2019, 10, 2810. [Google Scholar] [CrossRef]
- Ribes, A.; Zwiers, F.W.; Azaïs, J.M.; Naveau, P. A new statistical approach to climate change detection and attribution. Clim. Dyn. 2017, 48, 367–386. [Google Scholar] [CrossRef]
- Andres, H.J.; Peltier, W.R. Attributing observed Greenland responses to natural and anthropogenic climate forcings. Clim. Dyn. 2015, 45, 2919–2936. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J.; Thiemens, M.H. Selecting Global Climate Models for Regional Climate Change Studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannart, A. Integrated Optimal Fingerprinting: Method Description and Illustration. J. Clim. 2016, 29, 1977–1998. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Persad, G.G.; Caldeira, K. Divergent global-scale temperature effects from identical aerosols emitted in different regions. Nat. Commun. 2018, 9, 3289. [Google Scholar] [CrossRef] [Green Version]
- Tryjanowski, P.; Wu, Q.; Imeson, A.; Casassa, G.; Estrella, N.; Rosenzweig, C.; Neofotis, P.; Karoly, D.; Root, T.L.; Seguin, B.; et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar]
- He, T.; Liang, S.; Yu, Y.; Wang, D.; Gao, F.; Liu, Q. Greenland surface albedo changes in July 1981–2012 from satellite observations. Environ. Res. Lett. 2013, 8, 044043. [Google Scholar] [CrossRef]
- Stocker, B.D.; Roth, R.; Joos, F.; Spahni, R.; Steinacher, M.; Zaehle, S.; Bouwman, L.; Xu, R.; Prentice, I.C. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Chang. 2013, 3, 666–672. [Google Scholar] [CrossRef]
Name | Affiliation/Country | Resolution |
---|---|---|
bcc-csm1-1 | CN | 64 × 128 |
bcc-csm1-m | CN | 160 × 320 |
BNU-ESM | CN | 64 × 128 |
GFDL-ESM2G | USA | 90 × 144 |
GFDL-ESM2M | USA | 90 × 144 |
GISS-E2-H | USA | 90 × 144 |
GISS-E2-H-CC | USA | 90 × 144 |
ipsl-cm5a-lr | FRA | 96 × 96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Zhou, H.; Chen, G.; Li, Q.; Wu, Y.; Liang, H. New Insights in Regional Climate Change: Coupled Land Albedo Change Estimation in Greenland from 1981 to 2017. Remote Sens. 2020, 12, 756. https://doi.org/10.3390/rs12050756
Peng F, Zhou H, Chen G, Li Q, Wu Y, Liang H. New Insights in Regional Climate Change: Coupled Land Albedo Change Estimation in Greenland from 1981 to 2017. Remote Sensing. 2020; 12(5):756. https://doi.org/10.3390/rs12050756
Chicago/Turabian StylePeng, Fei, Haoran Zhou, Gong Chen, Qi Li, Yongxing Wu, and Heming Liang. 2020. "New Insights in Regional Climate Change: Coupled Land Albedo Change Estimation in Greenland from 1981 to 2017" Remote Sensing 12, no. 5: 756. https://doi.org/10.3390/rs12050756
APA StylePeng, F., Zhou, H., Chen, G., Li, Q., Wu, Y., & Liang, H. (2020). New Insights in Regional Climate Change: Coupled Land Albedo Change Estimation in Greenland from 1981 to 2017. Remote Sensing, 12(5), 756. https://doi.org/10.3390/rs12050756