Inversion and Validation of Improved Marine Gravity Field Recovery in South China Sea by Incorporating HY-2A Altimeter Waveform Data
Abstract
:1. Introduction
2. Marine Gravity Modeling from Altimeter Measurements
Marine Gravity Anomaly by Vertical Deflection
3. Data Analysis and Waveform Retracking
3.1. HY-2A Data Analysis
3.2. HY-2A Two-Pass Waveform Retracking
3.3. HY-2A SSS Calculation
4. Regional Marine Gravity for the SCS
5. Evaluation and Discussion
5.1. Verification with Marine Gravity Models
5.2. Validation with Shipboard Gravity Measurements
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.B.; Maulik, J.; Knudsen, P. Marine gravity field for oil and mineral exploration—Improvements in the Arctic from CryoSat-2 SAR altimetry. IEEE Geosci. Remote Sens. Symp. 2014. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1956–1961. [Google Scholar] [CrossRef] [Green Version]
- Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studingger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; et al. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica. Geophys. Res. Lett. 2016, 43, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.B.; Knudsen, P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J. Geophys. Res. 1998, 103, 8129–8137. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J. Geophys. Res. 1997, 102, 10039–10054. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C. Inverse Vening-Meinesz formula and deflection-geoid formula: Applications to the predictions of gravity and geoid over the South China Sea. J. Geod. 1998, 72, 304–312. [Google Scholar] [CrossRef]
- Sandwell, D.T. A detailed view of the south Pacific geoid from satellite altimetry. J. Geophys. Res. 1984, 89, 1089–1104. [Google Scholar] [CrossRef]
- Sandwell, D.T.; McAdoo, D.C. Marine gravity of the Southern Ocean and Antarctic margin from Geosat. J. Geophys. Res. 1988, 93, 10389–10396. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P.; Tscherning, C.C. Investigation of methods for global gravity field recovery from the dense ERS-1 geodetic mission altimetry. In Global Gravity Field and Its Temporal Variations; Springer: Berlin/Heidelberg, Germany, 1996; pp. 218–226. [Google Scholar]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef]
- Deng, X.; Featherstone, W.E.; Hwang, C.; Berry, P.A.M. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Mar. Geod. 2002, 25, 249–271. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophys. J. Int. 2005, 163, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Guo, J.; Deng, X.; Hsu, H.; Liu, Y. Coastal gravity anomalies from retracked Geosat/GM altimetry: Improvement, limitation and the role of airborne gravity data. J. Geod. 2006, 80, 204–216. [Google Scholar] [CrossRef]
- McAdoo, D.C.; Farrell, S.L.; Laxon, S.W.; Zwally, H.J.; Yi, D.; Ridout, A.L. Arctic Ocean gravity field derived from ICESat and ERS-2 altimetry: Tectonic implications. J. Geophys. Res. Solid Earth 2008, 113, B05408. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P.; Berry, P.A.M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod. 2010, 84, 191–199. [Google Scholar] [CrossRef]
- Andersen, O.B.; Jain, M.; Knudsen, P. The Impact of Using Jason-1 and Cryosat-2 Geodetic Mission Altimetry for Gravity Field Modeling. IAG 150 Years Symp. 2016, 143, 205–210. [Google Scholar]
- Zhang, S.; Li, J.; Jin, T.; Che, D. HY-2A Altimeter Data Initial Assessment and Corresponding Two-Pass Waveform Retracker. Remote Sens. 2018, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Guo, J.; Hwang, C.; Gao, J.; Yuan, J.; Liu, X. How HY-2A/GM altimeter performs in marine gravity derivation: Assessment in the South China Sea. Geophys. J. Int. 2019, 219, 1056–1064. [Google Scholar] [CrossRef]
- Olgiati, A.; Balmino, G.; Sarrailh, M.; Green, C.M. Gravity anomalies from satellite altimetry: Comparison between computation via geoid heights and via deflections of the vertical. Bull. Géodésique 1995, 69, 252–260. [Google Scholar] [CrossRef]
- Andersen, O.B.; Scharroo, R. Range and geophysical corrections in coastal regions: And implications for mean sea surface determination. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 103–145. [Google Scholar]
- Zhang, S.; Li, J.; Jin, T.; Che, D. Assessment of radar altimetry correction slopes for marine gravity recovery: A case study of Jason-1 GM data. J. Appl. Geophys. 2018, 151, 90–102. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Hou, K.; Zhang, S.; Kong, X. Quality assessment of HY-2A altimeter data through tide gauge comparisons. Haiyang Xuebao 2019, 41, 136–142. [Google Scholar]
- Brown, G. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Garcia, E.S.; Sandwell, D.T.; Smith, W.H.F. Retracking CryoSat-2, Envisat, and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophys. J. Int. 2014, 196, 1402–1422. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Sandwell, D.T. Retracking of SARAL/AltiKa Radar Altimetry Waveforms for Optimal Gravity Field Recovery. Mar. Geod. 2017, 40, 40–56. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. J. Geophys. Res. 2009, 114, B014411. [Google Scholar] [CrossRef] [Green Version]
- Marks, K.M.; Smith, W.H.F. Detecting small seamounts in AltiKa repeat cycle data. Mar. Geophys. Res. 2016, 37, 349–359. [Google Scholar] [CrossRef]
- Zhang, S.; Sandwell, D.T.; Jin, T.; Li, D. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. J. Appl. Geophys. 2017, 137, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.T.; Garcia, E.; Soofi, K.; Wessel, P.; Chandler, M.; Smith, W.H.F. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead. Edge 2013, 32, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Bercovici, D. Interpolation with splines in tension: A Green’s function approach. Math. Geol. 1998, 30, 77–93. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.F.; Wobbe, F. Generic Mapping Tools: Improved version released. EOS Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Ke, B.; Zhang, C.; Guo, C.; Wang, B.; Yang, L. System Error Correction for Shipborne Gravimetric Data form Different Regions of Offshore in China. Geomat. Inf. Sci. Wuhan Univ. 2016, 40, 417–421. [Google Scholar]
- Fu, L.L.; Ubelmann, C. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Ocean. Technol. 2013, 31, 560–568. [Google Scholar] [CrossRef]
Cycle | Time | Number of Available Passes (*) | Available Passes over SCS |
---|---|---|---|
GM C0001 | 20160324-20160908 | 4332 (298) | 271 |
GM C0002 | 20160908-20170223 | 4373 (257) | 309 |
GM C0003 | 20170223-20170810 | 4360 (270) | 301 |
GM C0004 | 20170810-20180125 | 4399 (231) | 303 |
GM C0005 | 20180125-20180712 | 4386 (244) | 309 |
GM C0006 | 20180712-20181227 | 4333 (297) | 313 |
GM C0007 | 20181227-20190613 | 4278 (352) | 294 |
Corrections | Used Models or Methods |
---|---|
Dry troposphere correction | NCEP |
Wet troposphere correction | ECMWF (*) |
Ionospheric correction | GIM (*) |
Sea state bias | NSOAS empirical solution (*) |
Ocean tide | GOT V4.7 |
Solid earth tide | Cartwright and Tayler tables (*) |
Pole tide | Not applied |
Inverted barometer correction | NCEP |
Mission | Cycle | No Time Limit | Measurements within 1 Day | ||||||
---|---|---|---|---|---|---|---|---|---|
NC_A/NC_B | Min | Max | STD | NC_A/NC_B | Min | Max | STD | ||
HY-2A GM | 1 | 2156/2198 | −0.884 | 0.971 | 0.232 | 65/67 | −0.332 | 0.482 | 0.156 |
2 | 4242/4300 | −0.976 | 0.951 | 0.227 | 81/82 | −0.976 | 0.267 | 0.185 | |
3 | 2820/2986 | −0.992 | 0.994 | 0.311 | 65/72 | −0.865 | 0.794 | 0.218 | |
4 | 3364/3396 | −0.999 | 0.958 | 0.253 | 67/67 | −0.228 | 0.258 | 0.104 | |
5 | 2948/3012 | −0.973 | 0.975 | 0.270 | 69/70 | −0.643 | 0.287 | 0.151 | |
6 | 4173/4229 | −0.984 | 0.967 | 0.244 | 77/78 | −0.436 | 0.867 | 0.187 | |
7 | 2834/2869 | −0.998 | 0.968 | 0.248 | 68/68 | −0.756 | 0.968 | 0.204 | |
1-7 | 155121/158253 | −0.999 | 0.999 | 0.278 | 498/510 | −0.976 | 0.968 | 0.175 |
Mission | No. of 5 Hz SSS | No. of Outliers | Eliminating Rate (%) | Stacked Track Used |
---|---|---|---|---|
HY-2A GM | 5680168 | 76799 | 1.35 | No |
Geosat GM | 3107788 | 49314 | 1.59 | No |
Geosat ERM | 117686 | 559 | 0.47 | Yes |
ERS GM | 3195774 | 53377 | 1.67 | No |
ERS ERM | 238514 | 1204 | 0.50 | Yes |
Envisat | 11396374 | 101255 | 0.89 | No |
SARAL ERM | 2172606 | 23636 | 1.09 | No |
Jason-1/GM | 2612280 | 31209 | 1.19 | No |
Jason-1/ERM | 23025417 | 263610 | 1.14 | No |
T/P | 63509 | 147 | 0.23 | Yes |
T/P Tandem | 647969 | 13225 | 2.04 | No |
CryoSat-2/LRM | 6616436 | 65418 | 0.99 | No |
CryoSat-2/SAR | 1104892 | 27060 | 2.45 | No |
Model | Zhang’s Result (No HY-2A/GM) | HY-2A/GM Derived Result | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | STD | Min | Max | Mean | STD | |
DTU10 | −75.95 | 76.00 | 0.02 | 5.03 | −79.15 | 74.22 | 0.02 | 4.95 |
DTU13 | −72.65 | 70.35 | 0.02 | 4.83 | −74.80 | 67.95 | 0.01 | 4.75 |
DTU17 | −74.05 | 63.58 | 0.01 | 4.63 | −77.25 | 60.77 | 0.01 | 4.55 |
V23.1 | −81.70 | 198.00 | −0.04 | 1.57 | −72.60 | 198.00 | −0.05 | 1.43 |
V27.1 | −81.00 | 96.40 | −0.07 | 2.47 | −79.40 | 96.40 | −0.08 | 2.44 |
Zhu | −85.361 | 101.860 | 0.23 | 5.03 | −76.26 | 101.86 | 0.23 | 4.93 |
EGM2008 | −85.29 | 87.37 | 0.03 | 4.95 | −76.19 | 84.37 | 0.02 | 4.86 |
XGM2019 | −81.99 | 93.14 | 0.29 | 6.46 | −72.88 | 93.14 | 0.28 | 6.41 |
GOCO06S | −184.81 | 229.18 | 0.07 | 25.04 | −183.07 | 229.18 | 0.06 | 25.00 |
Cruise (NB_M) | HY-2A/GM Derived Result | Zhang [30] | Zhu [19] | V23.1 | V27.1 | DTU10 | DTU17 | EGM2008 (Reference) | Crossover Discrepancy (NB_C) |
---|---|---|---|---|---|---|---|---|---|
01010258 (33861) | 8.46 | 8.47 | 8.90 | 8.51 | 8.40 | 8.97 | 8.72 | 8.94 | 3.97 (248) |
01010259 (2505) | 6.99 | 7.00 | 7.19 | 7.21 | 6.87 | 7.09 | 6.98 | 7.08 | 9.59 (46) |
01010260 (28028) | 8.00 | 8.03 | 8.11 | 8.02 | 7.97 | 8.12 | 7.78 | 8.10 | 4.22 (131) |
08020049 (18068) | 10.91 | 11.05 | 12.82 | 11.66 | 10.98 | 13.14 | 11.62 | 13.49 | 8.97 (109) |
08020071 (45474) | 6.91 | 6.96 | 6.48 | 6.87 | 6.79 | 6.47 | 5.98 | 6.53 | 6.72 (263) |
08020072 (13068) | 10.56 | 10.61 | 13.43 | 10.57 | 10.80 | 13.67 | 11.33 | 13.90 | 4.50 (68) |
67010140 (9532) | 5.38 | 5.39 | 5.33 | 5.45 | 5.27 | 5.23 | 5.12 | 5.29 | 9.04 (315) |
67010141 (23843) | 6.19 | 6.24 | 6.50 | 6.24 | 6.12 | 6.40 | 6.16 | 6.49 | 4.61 (75) |
67010142 (15985) | 9.28 | 9.35 | 9.47 | 9.69 | 8.81 | 9.55 | 8.63 | 9.72 | 7.60 (171) |
67010146 (21896) | 6.73 | 6.73 | 6.47 | 6.70 | 6.54 | 6.49 | 6.22 | 6.51 | 7.38 (139) |
j1020003 (1860) | 7.65 | 7.69 | 6.78 | 7.74 | 7.49 | 6.84 | 6.57 | 6.76 | 5.85 (86) |
j1020026 (1132) | 7.04 | 7.10 | 6.96 | 6.99 | 6.76 | 7.31 | 6.78 | 7.30 | 4.99 (178) |
j1030028 (4206) | 7.42 | 8.00 | 6.82 | 6.94 | 6.22 | 7.14 | 5.94 | 7.22 | 5.42 (248) |
j2010003 (1151) | 8.26 | 8.33 | 7.62 | 8.06 | 7.92 | 7.57 | 7.27 | 7.62 | 1.07 (92) |
Average | 7.86 | 7.92 | 8.18 | 7.95 | 7.75 | 8.23 | 7.63 | 8.31 | 6.17 |
Accuracy | 4.88 | 4.96 | 5.38 | 5.02 | 4.69 | 5.45 | 4.49 | 5.57 | -- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Andersen, O.B.; Kong, X.; Li, H. Inversion and Validation of Improved Marine Gravity Field Recovery in South China Sea by Incorporating HY-2A Altimeter Waveform Data. Remote Sens. 2020, 12, 802. https://doi.org/10.3390/rs12050802
Zhang S, Andersen OB, Kong X, Li H. Inversion and Validation of Improved Marine Gravity Field Recovery in South China Sea by Incorporating HY-2A Altimeter Waveform Data. Remote Sensing. 2020; 12(5):802. https://doi.org/10.3390/rs12050802
Chicago/Turabian StyleZhang, Shengjun, Ole Baltazar Andersen, Xiangxue Kong, and Hang Li. 2020. "Inversion and Validation of Improved Marine Gravity Field Recovery in South China Sea by Incorporating HY-2A Altimeter Waveform Data" Remote Sensing 12, no. 5: 802. https://doi.org/10.3390/rs12050802
APA StyleZhang, S., Andersen, O. B., Kong, X., & Li, H. (2020). Inversion and Validation of Improved Marine Gravity Field Recovery in South China Sea by Incorporating HY-2A Altimeter Waveform Data. Remote Sensing, 12(5), 802. https://doi.org/10.3390/rs12050802