Trends in the Stability of Antarctic Coastal Polynyas and the Role of Topographic Forcing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. A Spatial Multi-Smoothing Algorithm
2.3. Extraction of Polynyas and Sea Ice
3. Results and Analysis
3.1. Comparison of Smoothing Results
3.2. Stability Analysis of the Coastal Polynyas
3.2.1. The Relationship Between Coastal Polynyas and Topography
3.2.2. The Relationship Between Coastal Polynyas and Wind
3.3. Stability Changes of Coastal Polynyas
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, S.D.; Muench, R.D.; Pease, C.H. Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res. 1990, 37, 1086. [Google Scholar] [CrossRef]
- Barber, D.G.; Massom, R.A. The role of sea ice in Arctic and Antarctic polynyas. Elsevier Oceanogr. 2007, 74, 1–54. [Google Scholar]
- Markus, T.; Kottmeier, C.; Fahrbach, E. Ice Formation in Coastal Polynyas In the Weddell Sea and Their Impact on Oceanic Salinity. In Antarctic Sea Ice: Physical Processes, Interactions and Variability; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Gordon, A.L. Southern Ocean polynya. Nat. Clim. Chang. 2014, 4, 249. [Google Scholar] [CrossRef]
- Hirano, D.; Fukamachi, Y.; Ohshima, K.I.; Watanabe, E.; Mahoney, A.R.; Eicken, H.; Itoh, M.; Simizu, D.; Iwamoto, K.; Jones, J.; et al. Winter Water Formation in Coastal Polynyas of the Eastern Chukchi Shelf: Pacific and Atlantic Influences. J. Geophys. Res. Ocean. 2018, 123, 5688–5705. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.; Kim, M.; Hahm, D.; Rhee, T.S.; Hwang, J. An Investigation of Gas Exchange and Water Circulation in the Amundsen Sea Based On Dissolved Inorganic Radiocarbon. Geophys. Res. Lett. 2018, 45, 12368–12375. [Google Scholar] [CrossRef]
- Knies, J.; Köseoğlu, D.; Rise, L.; Baeten, N.; Bellec, V.K.; Bøe, R.; Klug, M.; Panieri, G.; Jernas, P.E.; Belt, S.T. Nordic Seas polynyas and their role in preconditioning marine productivity during the Last Glacial Maximum. Nat. Commun. 2018, 9, 3959. [Google Scholar] [CrossRef] [PubMed]
- Labrousse, S.; Williams, G.; Tamura, T.; Bestley, S.; Sallée, J.-B.; Fraser, A.D.; Sumner, M.; Roquet, F.; Heerah, K.; Picard, B.; et al. Coastal polynyas: Winter oases for subadult southern elephant seals in East Antarctica. Sci. Rep. 2018, 8, 3183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, J.M.; Raphael, M.N. The circumpolar influence of large-scale atmospheric circulations on Antarctic coastal polynyas. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Bronselaer, B.; Winton, M.; Griffies, S.M.; Hurlin, W.J.; Rodgers, K.B.; Sergienko, O.V.; Stouffer, R.J.; Russell, J.L. Change in future climate due to Antarctic meltwater. Nature 2018, 564, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Dimento, B.P.; Mason, R.P.; Brooks, S.; Moore, S. The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 144, 28–38. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Dijken, G.L.V. Phytoplankton dynamics within 37 Antarctic coastal polynyas. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Arrigo, K.R. Sea Ice Ecosystems. Annu. Rev. Mar. Sci. 2014, 6, 439–467. [Google Scholar] [CrossRef] [PubMed]
- Oliver, H.; St-Laurent, P.; Sherrell, R.M.; Yager, P.L. Controls on summer phytoplankton blooms in a highly productive Antarctic coastal polynya. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Yager, P.L.; St-Laurent, P.; Oliver, H.; Sherrell, R.M.; Stammerjohn, S.E.; Dinniman, M.S. High-resolution numerical ocean model illustrates how ice-sheet ocean interactions impact the biological pump of an Antarctic coastal polynya. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- St-Laurent, P.; Yager, P.L.; Sherrell, R.M.; Oliver, H.; Dinniman, M.S.; Stammerjohn, S.E. Modeling the Seasonal Cycle of Iron and Carbon Fluxes in the Amundsen Sea Polynya, Antarctica. J. Geophys. Res. Ocean. 2019, 124, 1544–1565. [Google Scholar] [CrossRef] [Green Version]
- Schauer, U.; Fahrbach, E. A dense bottom water plume in the western Barents Sea: Downstream modification and interannual variability. Deep-Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 2095–2108. [Google Scholar] [CrossRef]
- Williams, G.D.; Aoki, S.; Jacobs, S.S.; Rintoul, S.R.; Tamura, T.; Bindoff, N.L. Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149°E). J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Williams, G.D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K.I.; Fukamachi, Y.; Fraser, A.D.; Gao, L.; Chen, H.; McMahon, C.R.; et al. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat. Commun. 2016, 7, 12577. Available online: https://www.nature.com/articles/ncomms12577#supplementary-information (accessed on 20 December 2019). [CrossRef]
- Maqueda, M.A.M.; Willmott, A.J.; Biggs, N.R.T. Polynya Dynamics: A Review of Observations and Modeling. Rev. Geophy. 2004, 42. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Willmes, S.; Heinemann, G. Long-term coastal-polynya dynamics in the Southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Jenouvrier, S. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas. Cryosphere 2016, 10, 1823–1843. [Google Scholar] [CrossRef] [Green Version]
- Maykut, G.A. Energy Exchange Over Young Sea Ice in the Central Arctic. J. Geophys. Res. Ocean. 1978, 83, 3646–3658. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 2008, 35, 284–298. [Google Scholar] [CrossRef]
- Grebmeier, J.M.; Cooper, L.W. Influence of the St. Lawrence Island Polynya upon the Bering Sea benthos. J. Geophys. Res. Ocean. 1995, 100, 4439–4460. [Google Scholar] [CrossRef]
- Labrousse, S.; Sallée, J.-B.; Fraser, A.D.; Massom, R.A.; Reid, P.; Hobbs, W.; Guinet, C.; Harcourt, R.; McMahon, C.; Authier, M.; et al. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator. Sci. Rep. 2017, 7, 43236. Available online: https://www.nature.com/articles/srep43236#supplementary-information (accessed on 20 December 2019). [CrossRef] [PubMed] [Green Version]
- Gordon, A.L.; Comiso, J.C. Polynyas in the Southern Ocean. Sci. Am. 1988, 258, 90–97. [Google Scholar] [CrossRef]
- Cheon, W.G.; Cho, C.B.; Gordon, A.L.; Kim, Y.H.; Park, Y.G. The Role of Oscillating Southern Hemisphere Westerly Winds: Southern Ocean Coastal and Open-Ocean Polynyas. J. Clim. 2018, 31. [Google Scholar] [CrossRef]
- Gao, G.P.; Dong, Z.Q. Advances in Studies on Mechanism of the Weddell Polynya Formation. J. Ocean Univ. Qingdao 2004, 34, 001–006. [Google Scholar]
- Mezgec, K.; Stenni, B.; Crosta, X.; Masson-Delmotte, V.; Baroni, C.; Braida, M.; Ciardini, V.; Colizza, E.; Melis, R.; Salvatore, M.C.; et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 2017, 8, 1334. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.D. Abyssal water mass formation off the eastern Wilkes land cost of Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 501–522. [Google Scholar] [CrossRef]
- Orsi, A.H.; Wiederwohl, C.L. A recount of Ross Sea waters. Deep-Sea Res. Part II: Top. Stud. Oceanogr. 2009, 56, 778–795. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I. Circumpolar Mapping of Antarctic Coastal Polynyas and Landfast Sea Ice: Relationship and Variability. JCLI 2015, 28, 3650–3670. [Google Scholar] [CrossRef]
- Parish, T.R. Surface winds over the Antarctic continent: A review. Rev. Geophy. 1988, 26, 169–180. [Google Scholar] [CrossRef]
- Massom, R.A.; Harris, P.T.; Michael, K.J.; Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 2017, 27, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.L. Deep Antarctic Convection West of Maud Rise. J. Phys. Oceanogr. 2010, 8, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Alverson, K.D. Topographic preconditioning of open ocean deep convection. J. Phys. Oceanogr. 1995, 26, 2196–2213. [Google Scholar] [CrossRef] [Green Version]
- Nnamchi, H.C.; Li, J.; Kucharski, F.; Kang, I.S.; Keenlyside, N.S.; Ping, C.; Farneti, R. Thermodynamic controls of the Atlantic Niño. Nat. Commun. 2015, 6, 8895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oueslati, B.; Yiou, P.; Jézéquel, A. Revisiting the dynamic and thermodynamic processes driving the record-breaking January 2014 precipitation in the southern UK. Sci. Rep. 2019, 9, 2859. [Google Scholar] [CrossRef]
- Holland, D.M. Explaining the Weddell Polynya—A large ocean eddy shed at Maud Rise. Science 2001, 292, 1697–1700. [Google Scholar] [CrossRef]
- Chafik, L.; Nilsen, J.E.Ø.; Dangendorf, S.; Reverdin, G.; Frederikse, T. North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era. Sci. Rep. 2019, 9, 1041. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Burns, B.A. A method to estimate subpixel-scale coastal polynyas with satellite passive microwave data. J. Geophys. Res. Ocean. 1995, 100, 4473. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Nihashi, S.; Iwamoto, K.J.G.L. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 2016, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Nihashi, S.; Ohshima, K.I.; Tamura, T. Sea-Ice Production in Antarctic Coastal Polynyas Estimated From AMSR2 Data and Its Validation Using AMSR-E and SSM/I-SSMIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3912–3922. [Google Scholar] [CrossRef] [Green Version]
- Preußer, A.; Ohshima, K.I.; Iwamoto, K.; Willmes, S.; Oceans, G.H. Retrieval of wintertime sea-ice production in Arctic polynyas using thermal infrared and passive microwave remote sensing data. JGR Oceans 2019, 124, 5503–5528. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhou, X.; Sun, X.; Cheng, J.; Bo, H.U.; Chunhua, L.I.; Press, C.O. The inter comparison and assessment of satellite sea-ice concentration datasets from the arctic. J. Remote Sens. 2017. [Google Scholar] [CrossRef]
- Comiso, J.C.; Meier, W.; Markus, T. Annomalies and Trends in the Sea Ice Cover from 40 years of Passive Microwave Data. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Kaleschke, L.; Lüpkes, C.; Vihma, T.; Haarpaintner, J.; Bochert, A.; Hartmann, J.; Heygster, G. SSM/I Sea Ice Remote Sensing for Mesoscale Ocean-Atmosphere Interaction Analysis. J. Remote Sens. 2001, 27, 526–537. [Google Scholar] [CrossRef]
- Spreen, G.K.L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.J.M.-S.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Lindsay, R.W. Halo of low ice concentration observed over the Maud Rise seamount. Geophys. Res. Lett. 2004, 31, L13302. [Google Scholar] [CrossRef] [Green Version]
- Pease, C.H. The Size of Wind-Driven Coastal Polynyas. J. Geophys. Res. Ocean. 1987, 92, 7049–7059. [Google Scholar] [CrossRef]
- Barthélemy, A.; Goosse, H.; Mathiot, P.; Fichefet, T. Inclusion of a katabatic wind correction in a coarse-resolution global coupled climate model. Ocean Model. 2012, 48, 1203. [Google Scholar] [CrossRef]
Bed Elevation (m) | Area (km2) | Percentage (%) | Accumulated Percentage (%) |
---|---|---|---|
<−2000 | 1423 | 0.45 | 0.45 |
−2000 ~ −1800 | 887 | 0.28 | 0.73 |
−1800 ~ −1600 | 1111 | 0.35 | 1.08 |
−1600 ~ −1400 | 1669 | 0.52 | 1.60 |
−1400 ~ −1200 | 3548 | 1.11 | 2.71 |
−1200 ~ −1000 | 6887 | 2.16 | 4.87 |
−1000 ~ −800 | 20,156 | 6.32 | 11.19 |
−800 ~ −600 | 59,769 | 18.74 | 29.93 |
−600 ~ −400 | 71,411 | 22.40 | 52.33 |
−400 ~ −200 | 104,838 | 32.88 | 85.21 |
−200 ~ 0 | 47,174 | 14.79 | 100 |
Total | 318,873 | 100 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Ma, Y.; Chen, F.; Liu, J.; Yao, W.; Qiu, Y.; Zhang, S. Trends in the Stability of Antarctic Coastal Polynyas and the Role of Topographic Forcing Factors. Remote Sens. 2020, 12, 1043. https://doi.org/10.3390/rs12061043
Jiang L, Ma Y, Chen F, Liu J, Yao W, Qiu Y, Zhang S. Trends in the Stability of Antarctic Coastal Polynyas and the Role of Topographic Forcing Factors. Remote Sensing. 2020; 12(6):1043. https://doi.org/10.3390/rs12061043
Chicago/Turabian StyleJiang, Liyuan, Yong Ma, Fu Chen, Jianbo Liu, Wutao Yao, Yubao Qiu, and Shuyan Zhang. 2020. "Trends in the Stability of Antarctic Coastal Polynyas and the Role of Topographic Forcing Factors" Remote Sensing 12, no. 6: 1043. https://doi.org/10.3390/rs12061043
APA StyleJiang, L., Ma, Y., Chen, F., Liu, J., Yao, W., Qiu, Y., & Zhang, S. (2020). Trends in the Stability of Antarctic Coastal Polynyas and the Role of Topographic Forcing Factors. Remote Sensing, 12(6), 1043. https://doi.org/10.3390/rs12061043