Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China
Abstract
:1. Introduction
2. Retrieval Strategy and Data
2.1. Advanced Himawari Imager
2.2. Basic Method
2.3. Aerosol Types
2.4. The Core Strategy
2.5. Execution Steps
2.6. Study Area
2.7. Evaluation Metrics
3. Results and Analysis
3.1. Validation against AERONET Measurements
3.2. Time Series Analysis
3.3. Spatial–Temporal Distributions of ITS-Derived Data
3.4. Comparison with Official H8–AHI and MODIS AOD Products
3.5. Aerosol Type Analysis
4. Discussion and Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Description |
Total upward flux densities with atmosphere optical depth equal to τ | |
Total downward flux densities with atmosphere optical depth equal to τ | |
Solar flux density at the top of atmosphere | |
Cosine of solar zenith angle | |
( ) | Earth’s surface reflectance (at spectral band) |
() | Earth’s system reflectance (at spectral band) |
Total optical depth | |
Aerosol optical depth | |
Rayleigh optical depth | |
Asymmetry factor | |
Single scattering albedo | |
Wavelength exponent in angstrom’s turbidity formula | |
Angstrom’s turbidity coefficient | |
Atmospheric gas transmission factor | |
Number of predefined aerosol types | |
Number of bands | |
View zenith angle, solar zenith angle |
Appendix A. Symbols in Equation (2)
Appendix B. Symbols in Equation (5).
Appendix C
Wavelength | |||||||
---|---|---|---|---|---|---|---|
0.47 | 4.26 × −6 | 2.432 × −3 | |||||
0.55 | 1.05 × −4 | 2.957 × −2 | |||||
0.66 | −5.739 | 0.926 | −0.019 | 1.543 × −2 | 5.09 × −5 | 2.478 × −2 | |
0.86 | −5.330 | 0.824 | −0.028 | 1.947 × −2 |
References
- Xue, Y.; He, X.; Xu, H.; Guang, J.; Guo, J.; Mei, L. China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos. Environ. 2014, 95, 45–58. [Google Scholar] [CrossRef]
- Wu, L.; Lü, X.; Qin, K.; Bai, Y.; Li, J.; Ren, C.; Zhang, Y. Analysis to Xuzhou aerosol optical characteristics with ground-based measurements by sun photometer. Kexue Tongbao/Chinese Sci. Bull. 2016, 61, 2287–2998. [Google Scholar]
- Qin, K.; Wang, L.; Wu, L.; Xu, J.; Rao, L.; Letu, H.; Shi, T.; Wang, R. A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang, China. Atmos. Res. 2017, 198, 113–122. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G.A. Scale effects on averaging of cloud droplet and aerosol number concentrations: Observations and models. J. Clim. 1999, 12, 1268–1279. [Google Scholar] [CrossRef]
- Qin, K.; Wu, L.; Man, S.W.; Letu, H.; Hu, M.; Lang, H.; Sheng, S.; Teng, J.; Xiao, X.; Yuan, L. Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based Lidar and CALIPSO satellite. Atmos. Environ. 2016, 141, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Veefkind, J.P.; De Leeuw, G.; Durkee, P.A. Aerosol optical depth retrieval over land from two angle view satellite radiometry. J. Aerosol Sci. 1998, 29, 65–74. [Google Scholar]
- Kolmonen, P.; Sogacheva, L.; Virtanen, T.H.; de Leeuw, G.; Kulmala, M. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD dataset. Int. J. Digit. Earth 2016, 9, 545–561. [Google Scholar] [CrossRef]
- Sogacheva, L.; Rodriguez, E.; Kolmonen, P.; Virtanen, T.H.; Saponaro, G.; De Leeuw, G.; Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; Van Der, R.J.A. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 2: AOD time series for 1995-2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations. Atmos. Chem. Phys. 2018, 18, 16631–16652. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R.C.; Liu, Y. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia. Atmos. Chem. Phys. 2016, 16, 1255–1269. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Li, Z.; Wang, J.; Xu, X.; Goloub, P.; Qie, L. Improving remote sensing of aerosol microphysical properties by near-infrared polarimetric measurements over vegetated land: Information content analysis. J. Geophys. Res. Atmos. 2018, 123, 2215–2243. [Google Scholar] [CrossRef]
- Li, Z.; Hou, W.; Hong, J.; Zheng, F.; Luo, D.; Wang, J.; Gu, X.; Qiao, Y. Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 21–37. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, J.M.; Ahn, M.H.; Sohn, B.J.; Lim, H.S. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. Int. J. Remote Sens. 2008, 29, 6181–6192. [Google Scholar] [CrossRef]
- Seo, S.-B.; Lim, H.-S.; Ahn, S.-I. Introduction to image pro-processing subsystem of geostationary ocean color imager (GOCI). Korean J. Remote Sens. 2010, 26, 167–173. [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T. An introduction to himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- De Leeuw, G.; Holzer-Popp, T.; Bevan, S.; Davies, W.H.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L.; et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 2015, 162, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Popp, T.; De Leeuw, G.; Bingen, C.; Brühl, C.; Capelle, V.; Chedin, A.; Clarisse, L.; Dubovik, O.; Grainger, R.; Griesfeller, J.; et al. Development, production and evaluation of aerosol climate data records from European satellite observations (Aerosol_cci). Remote Sens. 2016, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Martonchik, J.V.; Kahn, R.A.; Diner, D.J. Retrieval of aerosol properties over land using MISR observations. In Satellite Aerosol Remote Sensing Over Land; Springer: Berlin, Germany, 2009; pp. 267–293. [Google Scholar]
- Xue, Y.; Cracknell, A.P. Operational bi-angle approach to retrieve the earth surface albedo from AVHRR data in the visible band. Int. J. Remote Sens. 1995, 16, 417–429. [Google Scholar] [CrossRef]
- Yan, X.; Li, Z.; Luo, N.; Shi, W.; Zhao, W.; Yang, X.; Jin, J. A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmos. Res. 2018, 207, 14–27. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.L.; Xue, Y.; Kokhanovsky, A.A.; Von Hoyningen-Huene, W.; De Leeuw, G.; Burrows, J.P. Retrieval of aerosol optical depth over land surfaces from AVHRR data. Atmos. Meas. Tech. 2014, 7, 2411–2420. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Center for Satellite Applications and Research (Star), Noaa Nesdis. ABI Aerosol Detection Product. Available online: https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Aerosol_Detection_v3.0_Jan2019.pdf (accessed on 18 March 2020).
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Shen, S.; Sayer, A.M.; Bettenhausen, C.; Wei, J.C.; Ostrenga, D.M.; Vollmer, B.E.; Hsu, N.Y.; Kempler, S.J. Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Lin, S.; Bo, H.; Bilal, M.; Zhang, Z.; Wang, L. Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS. Atmos. Environ. 2018, 175, 221–233. [Google Scholar]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6. 1 aerosol optical depth products over land and ocean: Validation and comparison MODIS Collection 6. 1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2018, 201, 428–440. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.P.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. MODIS Doc. 1999, 23, 42–47. [Google Scholar]
- Govaerts, Y.M.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Govaerts, Y.; Luffarelli, M. Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space--Part 1: Theoretical concept. Atmos. Meas. Tech. 2018, 11, 6589–6603. [Google Scholar] [CrossRef]
- Luffarelli, M.; Govaerts, Y. Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space-Part 2: Application to geostationary and polar-orbiting satellite observations. Atmos. Meas. Tech. 2019, 12, 791–809. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.; Li, Z.; Liu, L.; Yang, L.; Chen, X.; Hou, W.; Zhang, Y.; Li, D.; Li, L.; Qie, L. a dark target method for himawari-8/ahi aerosol retrieval: application and validation. IEEE Trans. Geosci. Remote Sens. 2018, 57, 381–394. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Che, Y.; Fan, C.; Xie, Y.; Li, Y. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1489–1501. [Google Scholar] [CrossRef]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; et al. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmos. Meas. Tech. 2016, 9, 1377–1398. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Holben, B.; Eck, T.F.; Li, Z.; Song, C.H. GOCI Yonsei aerosol retrieval version 2 products: An improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmos. Meas. Tech. 2018, 11, 385–408. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Choi, M.; Kim, M.; Kim, J.; Chan, P.W. Retrieval and validation of aerosol optical properties using Japanese next generation meteorological satellite, Himawari-8. Korean J. Remote Sens. 2016, 32, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Qin, K.; Wu, L.; Xu, J.; Letu, H.; Zou, B.; He, Q.; Li, Y. Evaluation of JAXA Himawari-8-AHI level-3 aerosol products over eastern China. Atmosphere 2019, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; He, X.; de Leeuw, G.; Mei, L.; Che, Y.; Rippin, W.; Guang, J.; Hu, Y. Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sens. Environ. 2017, 198, 471–489. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; de Leeuw, G.; Holzer-Popp, T.; Guang, J.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C.; et al. Retrieval of aerosol optical depth over land based on a time series technique using MSG/SEVIRI data. Atmos. Chem. Phys. 2012, 12, 9167–9185. [Google Scholar] [CrossRef] [Green Version]
- Hongbin, W.; Lei, Z.; Shengming, J.; Zhiwei, Z.; Yuying, Z.H.U.; Chengying, Z.H.U. Evaluation of the MODIS aerosol products and analysis of the retrieval errors in China. Plateau Meteorol. 2016, 35, 810–822. [Google Scholar]
- Li, Z.; Zhang, Y.; Xu, H.; Li, K.; Dubovik, O.; Goloub, P. The fundamental aerosol models over china region: A cluster analysis of the ground-based remote sensing measurements of total columnar atmosphere. Geophys. Res. Lett. 2019, 46, 4924–4932. [Google Scholar] [CrossRef]
- Li, L.; Zheng, X.; Li, Z.; Li, Z.; Dubovik, O.; Chen, X.; Wendisch, M. Studying aerosol light scattering based on aspect ratio distribution observed by fluorescence microscope. Opt. Express 2017, 25, A813–A823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, M.; Murakami, H.; Nagao, T.; Yoshida, M.; Nio, T.; Oki, R. EarthCARE and Himawari-8 Aerosol Products EarthCARE. 2016. Available online: http://icap.atmos.und.edu/ICAP8/Day3/Kikuchi_JMA_ThursdayAM.pdf (accessed on 18 March 2020).
- Shang, H.; Chen, L.; Letu, H.; Zhao, M.; Li, S.; Bao, S. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. J. Geophys. Res. Atmos. 2017, 122, 3528–3543. [Google Scholar] [CrossRef]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3229–3239. [Google Scholar] [CrossRef]
- Holben, B.; Slutsker, I.; Giles, D.; Eck, T.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Sorokin, M.; Rodriguez, J.; Kraft, J.; et al. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation, Nasa Technical Reports. 2016. Available online: https://ntrs.nasa.gov/search.jsp?R=20160013870 (accessed on 30 January 2020).
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Ie, Y.; Li, Z.; Li, D.; Xu, H.; Li, K. Aerosol optical and microphysical properties of four typical sites of SONET in China based on remote sensing measurements. Remote Sens. 2015, 7, 9928–9953. [Google Scholar]
- JAXA Earth Observation Research Center (EORC). JAXA Himawari Monitor Aerosol Products. Available online: https://www.eorc.jaxa.jp/ptree/documents/Himawari_Monitor_Aerosol_Product_v6.pdf (accessed on 17 April 2019).
- Liou, K.N. An Introduction to Atmospheric Radiation/Kuo-Nan Liou; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Meador, W.E.; Weaver, W.R. Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci. 1980, 37, 630–643. [Google Scholar] [CrossRef] [Green Version]
- Higurashi, A.; Nakajima, T. Development of a two-channel aerosol retrieval algorithm on a global scale using noaa avhrr. J. Atmos. Sci. 1999, 56, 924–941. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, Z.; Li, J.; Zhou, X.; Ma, L.-M. Analytical delta-four-stream doubling–adding method for radiative transfer parameterizations. J. Atmos. Sci. 2013, 70, 794–808. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, F.; Min, J.; Yu, Q.-R.; Wang, X.-Y.; Ma, L. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization. Infrared Phys. Technol. 2016, 78, 254–262. [Google Scholar] [CrossRef]
- Falguni, P.; Levy, C.R.; Shana, M. Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation. Atmos. Meas. Tech. 2018, 11, 3205–3219. [Google Scholar]
- Dubovik, O.; Herman, M. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2010, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Flowerdew, R.J.; Haigh, J.D. Retrieval of aerosol optical thickness over land using the ATSR-2 Dual-Look satellite radiometer. Geophys. Res. Lett. 1996, 23, 351–354. [Google Scholar] [CrossRef]
- De Leeuw, G.; Sogacheva, L.; Rodriguez, E.; Kourtidis, K.; Georgoulias, A.K.; Alexandri, G.; Amiridis, V.; Proestakis, E.; Marinou, E.; Xue, Y.; et al. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: Data set evaluation and large-scale patterns. Atmos. Chem. Phys. 2018, 18, 1573–1592. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.A.; Garay, M.J.; Nelson, D.L.; Levy, R.C.; Tanré, D. Response to toward unified satellite climatology of aerosol properties. 3. modis versus misr versus aeronet. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.A.; Gaitley, B.J. An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res. Atmos. 2015, 120, 4248–4281. [Google Scholar] [CrossRef]
- Uesawa, D. Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring. Meteorol. Satell. Cent. Tech. 2016, 59, 59–63. [Google Scholar]
- Wang, W.; Mao, F.; Du, L.; Pan, Z.; Gong, W.; Fang, S. Deriving hourly PM2.5 concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China. Remote Sens. 2017, 9, 858. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
Sites | Longitude (°) | Latitude (°) | Altitude (m) | Period | Surface |
---|---|---|---|---|---|
Beijing-CAMS | 116.38 | 39.98 | 92 | 2018.8–2019.05 | Urban |
Beijing | 116.38 | 40.01 | 59 | 2018.8–2019.05 | Urban |
Xianghe | 116.96 | 39.75 | 36 | 2018.8–2019.05 | Rural |
Xuzhou | 117.14 | 34.22 | 60 | 2018.8–2019.05 | Suburb |
Taihu | 120.22 | 31.42 | 20 | 2018.8–2018.10 | Urban |
Yanqihu | 116.67 | 40.41 | 100 | 2018.8–2019.05 | Rural |
Jiaozuo | 113.25 | 35.19 | 113 | 2018.8–2019.05 | Urban |
Songshan | 113.10 | 34.54 | 475 | 2018.8–2019.05 | Woodland |
Hefei | 117.16 | 31.91 | 36 | 2018.8–2019.05 | Suburb |
Nanjing | 118.96 | 32.12 | 52 | 2018.8–2019.05 | Suburbs |
Shanghai | 121.48 | 31.28 | 85 | 2018.8–2019.05 | Urban |
Model | 470 nm | 510 nm | 640 nm | 870 nm |
---|---|---|---|---|
1 | 0.941/0.743 | 0.946/0.736 | 0.963/0.711 | 0.962/0.696 |
2 | 0.839/0.697 | 0.83/0.688 | 0.814/0.664 | 0.785/0.659 |
3 | 0.944/0.70 | 0.946/0.689 | 0.953/0.653 | 0.947/0.632 |
4 | 0.89/0.704 | 0.891/0.696 | 0.895/0.672 | 0.88/0.66 |
5 | 0.895/0.673 | 0.897/0.66 | 0.904/0.618 | 0.889/0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Qin, K.; Wu, L.; Mei, L.; de Leeuw, G.; Xue, Y.; Shi, Y.; Li, Y. Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China. Remote Sens. 2020, 12, 978. https://doi.org/10.3390/rs12060978
Li D, Qin K, Wu L, Mei L, de Leeuw G, Xue Y, Shi Y, Li Y. Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China. Remote Sensing. 2020; 12(6):978. https://doi.org/10.3390/rs12060978
Chicago/Turabian StyleLi, Ding, Kai Qin, Lixin Wu, Linlu Mei, Gerrit de Leeuw, Yong Xue, Yining Shi, and Yifei Li. 2020. "Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China" Remote Sensing 12, no. 6: 978. https://doi.org/10.3390/rs12060978
APA StyleLi, D., Qin, K., Wu, L., Mei, L., de Leeuw, G., Xue, Y., Shi, Y., & Li, Y. (2020). Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China. Remote Sensing, 12(6), 978. https://doi.org/10.3390/rs12060978