Unsupervised and Supervised Feature Extraction Methods for Hyperspectral Images Based on Mixtures of Factor Analyzers
Abstract
:1. Introduction
- Two unsupervised FE methods, MFA and DMFA, are proposed for HSI. MFA and DMFA are particularly suitable for DR of HSI with a non-normal distribution and unlabeled samples.
- A supervised FE method, SMFA, is proposed for HSI. SMFA can be effectively used for DR of HSI with a non-normal distribution and labeled samples.
- An image segmentation method based on the Gaussian mixture model is proposed for MFA, DMFA, and SMFA to solve the problem of a non-normal distribution.
- Frameworks for extracting the most useful features for HSI classification based on the MFA, DMFA, and SMFA DR methods are proposed.
2. Proposed FE Methods and Framework
2.1. MFA
2.2. DMFA
Algorithm 1 DMFA algorithm |
|
2.3. SMFA
2.4. Framework
Algorithm 2 Framework based on MFA and SMFA |
|
Algorithm 3 Framework based on DMFA |
|
3. Experiments and Results
3.1. Experimental Datasets
3.2. Experimental Setup
3.3. Tuning Parameter Estimation and Assessment
3.4. Classification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harsanyi, J.C.; Chang, C.I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Richards, J.A. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 538–542. [Google Scholar]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Chang, C.; Du, Q.; Sun, T.; Althouse, M.L. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2631–2641. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Li, W.; Du, Q.; Zhang, B. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity. Remote Sens. 2017, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, J.; Huang, X.; Dalla-Mura, M.; Plaza, A. Multiple morphological component analysis based decomposition for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3083–3102. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2011, 50, 879–893. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Pittore, M. Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images. Remote Sens. 2014, 6, 2912–2939. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhong, Y.; Huang, B.; Gong, J.; Li, P. Dimensionality reduction based on clonal selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4172–4186. [Google Scholar] [CrossRef]
- Luo, F.; Huang, H.; Duan, Y.; Liu, J.; Liao, Y. Local geometric structure feature for dimensionality reduction of hyperspectral imagery. Remote Sens. 2017, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yang, M. Dimensionality reduction of hyperspectral images with sparse discriminant embedding. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5160–5169. [Google Scholar] [CrossRef]
- Ulfarsson, M.O.; Palsson, F.; Sigurdsson, J.; Sveinsson, J.R. Classification of big data with application to imaging genetics. Proc. IEEE 2016, 104, 2137–2154. [Google Scholar] [CrossRef] [Green Version]
- Gormus, E.T.; Canagarajah, N.; Achim, A. Dimensionality reduction of hyperspectral images using empirical mode decompositions and wavelets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1821–1830. [Google Scholar] [CrossRef]
- Esser, E.; Moller, M.; Osher, S.; Sapiro, G.; Xin, J. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. Image Process. 2012, 21, 3239–3252. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Gao, L.; Liao, W.; Zhang, B. A new kernel method for hyperspectral image feature extraction. Geo-Spat. Inf. Sci. 2017, 20, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Jiao, L.; Liu, F.; Gou, S.; Zhao, J.; Zhao, Z. Dimensionality reduction of hyperspectral imagery using sparse graph learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1165–1181. [Google Scholar] [CrossRef]
- Plaza, A.; Martinez, P.; Plaza, J.; Perez, R. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Du, B.; Zhang, L.; Zhang, L. Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2509–2524. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, B.; Jia, X.; Liao, W.; Zhang, B. Optimized kernel minimum noise fraction transformation for hyperspectral image classification. Remote Sens. 2017, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 2012, 51, 844–856. [Google Scholar] [CrossRef]
- Bruce, L.M.; Koger, C.H.; Li, J. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2331–2338. [Google Scholar] [CrossRef]
- Mojaradi, B.; Abrishami-Moghaddam, H.; Zoej, M.J.V.; Duin, R.P. Dimensionality reduction of hyperspectral data via spectral feature extraction. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2091–2105. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Plaza, A.; Li, J.; Xiao, F.; Wei, Z. Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2270–2278. [Google Scholar] [CrossRef]
- Chen, G.; Qian, S. Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis. Int. J. Remote Sens. 2009, 30, 4889–4895. [Google Scholar] [CrossRef]
- Du, H.; Qi, H. An FPGA implementation of parallel ICA for dimensionality reduction in hyperspectral images. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE: Hoboken, NJ, USA, 2004; Volume 5, pp. 3257–3260. [Google Scholar]
- Feng, Z.; Yang, S.; Wang, S.; Jiao, L. Discriminative spectral–spatial margin-based semisupervised dimensionality reduction of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2014, 12, 224–228. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, D. Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2010, 8, 369–373. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2666–2677. [Google Scholar] [CrossRef]
- Li, H.; Xiao, G.; Xia, T.; Tang, Y.Y.; Li, L. Hyperspectral image classification using functional data analysis. IEEE Trans. Cybern. 2013, 44, 1544–1555. [Google Scholar]
- Ghamisi, P.; Benediktsson, J.A.; Ulfarsson, M.O. Spectral–spatial classification of hyperspectral images based on hidden Markov random fields. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2565–2574. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bo, Y. Object-based crop species classification based on the combination of airborne hyperspectral images and LiDAR data. Remote Sens. 2015, 7, 922–950. [Google Scholar] [CrossRef] [Green Version]
- Möckel, T.; Dalmayne, J.; Prentice, H.; Eklundh, L.; Purschke, O.; Schmidtlein, S.; Hall, K. Classification of grassland successional stages using airborne hyperspectral imagery. Remote Sens. 2014, 6, 7732–7761. [Google Scholar]
- Pan, L.; Li, H.; Deng, Y.; Zhang, F.; Chen, X.; Du, Q. Hyperspectral dimensionality reduction by tensor sparse and low-rank graph-based discriminant analysis. Remote Sens. 2017, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Licciardi, G.; Chanussot, J. Spectral transformation based on nonlinear principal component analysis for dimensionality reduction of hyperspectral images. Eur. J. Remote Sens. 2018, 51, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Roger, R.E. Principal components transform with simple, automatic noise adjustment. Int. J. Remote Sens. 1996, 17, 2719–2727. [Google Scholar] [CrossRef]
- Lawley, D.N. A modified method of estimation in factor analysis and some large sample results. Upps. Symp. Psychol. Factor Anal. 1953, 17, 35–42. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1999, 61, 611–622. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Rasti, B.; Ulfarsson, M.O.; Sveinsson, J.R. Hyperspectral feature extraction using total variation component analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6976–6985. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, X.; Li, S.; Duan, P.; Benediktsson, J.A. Feature extraction from hyperspectral images using learned edge structures. Remote Sens. Lett. 2019, 10, 244–253. [Google Scholar] [CrossRef]
- Tu, B.; Li, N.; Fang, L.; He, D.; Ghamisi, P. Hyperspectral Image Classification with Multi-Scale Feature Extraction. Remote Sens. 2019, 11, 534. [Google Scholar] [CrossRef] [Green Version]
- Rasti, B.; Ghamisi, P.; Ulfarsson, M.O. Hyperspectral Feature Extraction Using Sparse and Smooth Low-Rank Analysis. Remote Sens. 2019, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yuan, B. 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognit. Lett. 2005, 26, 527–532. [Google Scholar] [CrossRef]
- Kuo, B.C.; Landgrebe, D.A. Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1096–1105. [Google Scholar]
- Zhang, P.; He, H.; Gao, L. A nonlinear and explicit framework of supervised manifold-feature extraction for hyperspectral image classification. Neurocomputing 2019, 337, 315–324. [Google Scholar] [CrossRef]
- Ahmadi, S.A.; Mehrshad, N.; Razavi, S.M. Supervised feature extraction method based on low-rank representation with preserving local pairwise constraints for hyperspectral images. Signal Image Video Process. 2019, 13, 583–590. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Zhou, N.; Zheng, Y. Semisupervised dimensionality reduction of hyperspectral images via local scaling cut criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1547–1551. [Google Scholar] [CrossRef]
- Yang, S.; Jin, P.; Li, B.; Yang, L.; Xu, W.; Jiao, L. Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3587–3593. [Google Scholar] [CrossRef]
- Wu, H.; Prasad, S. Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels. Pattern Recognit. 2018, 74, 212–224. [Google Scholar] [CrossRef]
- Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer: New York, NY, USA, 1999; Volume 3. [Google Scholar]
- Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. In Proceedings of the 27th AIPR Workshop: Advances in Computer-Assisted Recognition, Washington, DC, USA, 14–16 October 1998; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3584, pp. 221–232. [Google Scholar]
- Chang, C.; Lin, C. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27. [Google Scholar] [CrossRef]
1 | Corn-no till | 143 | 1291 |
2 | Corn-min till | 83 | 751 |
3 | Grass/Pasture | 50 | 447 |
4 | Grass/Trees | 75 | 672 |
5 | Hay-windrowed | 49 | 440 |
6 | Soybean-no till | 97 | 871 |
7 | Soybean-min till | 247 | 2221 |
8 | Soybean-clean till | 61 | 553 |
9 | Woods | 129 | 1165 |
Total | 934 | 8411 |
1 | Asphalt | 663 | 5968 |
2 | Meadows | 1865 | 16,784 |
3 | Gravel | 210 | 1889 |
4 | Trees | 306 | 2758 |
5 | Painted metal sheets | 135 | 1210 |
6 | Bare Soil | 503 | 4526 |
7 | Bitumen | 133 | 1197 |
8 | Self-Blocking Bricks | 368 | 3314 |
9 | Shadows | 95 | 852 |
Total | 4278 | 38,498 |
1 | Brocoli_green_weeds_1 | 201 | 1808 |
2 | Brocoli_green_weeds_2 | 373 | 3353 |
3 | Fallow | 198 | 1778 |
4 | Fallow_rough_plow | 139 | 1255 |
5 | Fallow_smooth | 268 | 2410 |
6 | Stubble | 396 | 3563 |
7 | Celery | 358 | 3221 |
8 | Grapes_untrained | 1127 | 10,144 |
9 | Soil_vinyard_develop | 620 | 5583 |
10 | Corn_senesced_green_weeds | 328 | 2950 |
11 | Lettuce_romaine_4wk | 107 | 961 |
12 | Lettuce_romaine_5wk | 193 | 1734 |
13 | Lettuce_romaine_6wk | 92 | 824 |
14 | Lettuce_romaine_7wk | 107 | 963 |
15 | Vinyard_untrained | 727 | 6541 |
16 | Vinyard_vertical_trellis | 181 | 1626 |
Total | 5415 | 48,714 |
1 | Healthy grass | 198 | 1053 |
2 | Stressed grass | 190 | 1064 |
3 | Synthetic grass | 192 | 505 |
4 | Trees | 188 | 1056 |
5 | Soil | 186 | 1056 |
6 | Water | 182 | 143 |
7 | Residential | 196 | 1072 |
8 | Commercial | 191 | 1053 |
9 | Road | 193 | 1059 |
10 | Highway | 191 | 1036 |
11 | Railway | 181 | 1054 |
12 | Parking Lot 1 | 192 | 1041 |
13 | Parking Lot 2 | 184 | 285 |
14 | Tennis Court | 181 | 247 |
15 | Running Track | 187 | 473 |
Total | 2832 | 12,197 |
1 | 75.13 ± 2.39 | 81.22 ± 1.39 | 86.48 ± 1.93 | 89.31 ± 0.98 | 84.51 ± 2.25 | 93.00 ± 1.87 | 97.49 ± 1.51 | 96.34 ± 1.32 |
2 | 83.33 ± 2.16 | 84.00 ± 4.21 | 89.30 ± 3.49 | 72.44 ± 3.97 | 82.82 ± 2.16 | 91.71 ± 1.05 | 99.17 ± 0.89 | 95.61 ± 1.04 |
3 | 94.51 ± 1.62 | 94.77 ± 2.27 | 97.48 ± 0.89 | 92.84 ± 2.62 | 91.50 ± 1.75 | 94.42 ± 1.08 | 97.35 ± 1.66 | 95.08 ± 1.51 |
4 | 96.09 ± 1.02 | 95.95 ± 0.99 | 97.65 ± 0.98 | 97.32 ± 1.62 | 98.51 ± 1.49 | 98.53 ± 0.40 | 98.39 ± 0.47 | 98.81 ± 1.08 |
5 | 99.55 ± 0.14 | 99.77 ± 0.18 | 99.84 ± 0.16 | 99.55 ± 0.23 | 99.32 ± 0.16 | 99.83 ± 0.18 | 99.86 ± 0.14 | 99.84 ± 0.18 |
6 | 75.03 ± 1.99 | 82.06 ± 2.27 | 82.50 ± 2.14 | 80.37 ± 2.89 | 82.43 ± 3.00 | 90.53 ± 0.68 | 95.48 ± 1.40 | 97.36 ± 0.62 |
7 | 78.22 ± 1.85 | 77.62 ± 1.45 | 88.40 ± 1.70 | 82.85 ± 2.05 | 88.74 ± 2.11 | 95.56 ± 1.58 | 96.91 ± 1.22 | 98.24 ± 1.42 |
8 | 83.54 ± 2.68 | 83.00 ± 2.34 | 89.21 ± 2.68 | 77.76 ± 2.74 | 79.57 ± 3.56 | 96.75 ± 1.34 | 98.74 ± 1.03 | 99.28 ± 1.06 |
9 | 99.40 ± 0.32 | 99.83 ± 0.41 | 99.66 ± 0.26 | 99.57 ± 0.36 | 99.49 ± 0.55 | 99.83 ± 0.30 | 99.74 ± 0.54 | 99.91 ± 0.46 |
AA | 87.20 ± 0.35 | 88.69 ± 0.73 | 92.30 ± 0.67 | 88.00 ± 0.64 | 89.65 ± 0.88 | 95.59 ± 1.01 | 98.14 ± 0.86 | 97.85 ± 0.51 |
OA | 84.48 ± 0.35 | 85.98 ± 0.39 | 90.96 ± 0.60 | 87.20 ± 0.56 | 89.28 ± 0.82 | 95.59 ± 0.86 | 97.86 ± 0.72 | 97.90 ± 0.60 |
KC | 0.8173 ± 0.0040 | 0.8345 ± 0.0048 | 0.8940 ± 0.0072 | 0.8495 ± 0.0065 | 0.8738 ± 0.0096 | 0.9459 ± 0.0102 | 0.9749 ± 0.0085 | 0.9753 ± 0.0070 |
Datasets | PCA | PPCA | FA | LDA | NWFE | MFA | DMFA | SMFA |
---|---|---|---|---|---|---|---|---|
INPS | 0.11 | 63.66 | 70.89 | 0.12 | 1.05 | 3.85 | 18.07 | 0.12 |
HSN | 2.91 | 1335.09 | 21.45 | 0.89 | 5.02 | 103.77 | 151.91 | 4.54 |
UPA | 0.62 | 285.01 | 4.01 | 0.21 | 0.91 | 28.10 | 79.30 | 1.55 |
SAS | 0.56 | 356.44 | 22.15 | 0.38 | − | 18.97 | 87.85 | 1.62 |
1 | 98.05 | 96.20 ± 0.29 | 96.37 | 80.53 | 80.72 ± 0.45 | 98.98 ± 0.89 | 99.31 ± 1.66 | 79.49 ± 1.37 |
2 | 96.01 | 96.36 ± 0.13 | 95.97 | 80.92 | 82.99 ± 0.18 | 95.33 ± 1.63 | 95.24 ± 1.58 | 83.46 ± 1.57 |
3 | 100 | 99.97 ± 0.27 | 100 | 100 | 99.42 ± 0.58 | 99.76 ± 0.24 | 99.82 ± 0.19 | 99.48 ± 0.34 |
4 | 98.05 | 97.35 ± 1.36 | 97.72 | 92.90 | 89.49 ± 0.94 | 99.89 ± 0.32 | 99.47 ± 1.78 | 89.30 ± 2.09 |
5 | 97.41 | 97.45 ± 0.16 | 97.11 | 96.97 | 98.86 ± 0.38 | 98.42 ± 0.82 | 98.11 ± 1.09 | 99.96 ± 0.11 |
6 | 99.94 | 95.07 ± 0.46 | 95.30 | 93.71 | 95.11 ± 0.21 | 47.24 ± 0.80 | 99.97 ± 0.27 | 92.31 ± 0.35 |
7 | 81.34 | 82.05 ± 0.31 | 87.91 | 84.80 | 79.76 ± 2.44 | 66.22 ± 1.38 | 89.53 ± 3.02 | 82.37 ± 1.23 |
8 | 81.45 | 68.87 ± 0.17 | 84.18 | 71.13 | 72.46 ± 4.73 | 84.06 ± 1.14 | 81.82 ± 2.64 | 90.03 ± 0.11 |
9 | 83.40 | 78.34 ± 0.60 | 78.08 | 72.52 | 75.54 ± 1.19 | 87.65 ± 1.04 | 91.66 ± 0.66 | 83.95 ± 1.08 |
10 | 70.03 | 83.58 ± 0.48 | 65.32 | 73.17 | 81.27 ± 3.21 | 86.21 ± 0.24 | 66.67 ± 4.76 | 97.97 ± 1.59 |
11 | 67.86 | 69.57 ± 1.86 | 57.04 | 85.39 | 93.55 ± 2.10 | 68.21 ± 0.16 | 74.51 ± 0.59 | 88.99 ± 4.01 |
12 | 85.50 | 89.15 ± 5.12 | 82.68 | 82.52 | 85.11 ± 1.86 | 95.80 ± 2.28 | 94.07 ± 2.64 | 96.25 ± 1.19 |
13 | 30.69 | 30.06 ± 1.33 | 43.85 | 70.53 | 70.88 ± 1.74 | 92.52 ± 3.26 | 89.56 ± 2.31 | 65.26 ± 0.89 |
14 | 99.18 | 98.39 ± 0.24 | 89.05 | 99.19 | 99.60 ± 0.31 | 94.64 ± 0.83 | 97.24 ± 1.13 | 99.96 ± 0.22 |
15 | 100 | 99.41 ± 0.59 | 100 | 95.98 | 98.73 ± 0.50 | 99.54 ± 0.54 | 99.88 ± 0.14 | 91.97 ± 1.61 |
AA | 85.93 | 85.50 ± 0.50 | 84.70 | 85.35 | 86.94 ± 0.47 | 87.68 ± 0.36 | 91.81 ± 0.39 | 89.42 ± 0.69 |
OA | 83.45 | 83.75 ± 0.59 | 82.05 | 83.59 | 85.35 ± 0.56 | 86.65 ± 0.42 | 88.72 ± 0.49 | 89.40 ± 0.67 |
KC | 0.8207 | 0.8240 ± 0.0065 | 0.8053 | 0.8223 | 0.8412 ± 0.0059 | 0.8552 ± 0.0046 | 0.8775 ± 0.0053 | 0.8848 ± 0.0075 |
1 | 92.00 ± 1.01 | 93.16 ± 0.82 | 94.65 ± 0.58 | 93.20 ± 0.55 | 94.10 ± 0.49 | 98.07 ± 0.45 | 98.39 ± 0.66 | 98.69 ± 0.27 |
2 | 95.71 ± 0.53 | 96.12 ± 0.25 | 96.43 ± 0.24 | 96.86 ± 0.41 | 97.52 ± 0.38 | 99.68 ± 0.10 | 99.02 ± 0.42 | 99.79 ± 0.08 |
3 | 78.98 ± 2.06 | 82.23 ± 1.86 | 80.16 ± 1.72 | 76.13 ± 2.81 | 74.01 ± 4.00 | 90.15 ± 2.29 | 98.39 ± 1.44 | 94.28 ± 1.93 |
4 | 94.24 ± 0.95 | 94.61 ± 0.82 | 93.86 ± 0.78 | 92.57 ± 0.90 | 89.63 ± 1.26 | 95.65 ± 0.36 | 98.72 ± 0.95 | 96.27 ± 0.61 |
5 | 99.41 ± 2.27 | 98.99 ± 2.01 | 99.21 ± 1.23 | 99.17 ± 0.16 | 99.59 ± 0.13 | 99.89 ± 0.12 | 99.93± 0.35 | 99.81 ± 0.09 |
6 | 90.96 ± 2.01 | 91.80 ± 0.75 | 93.54 ± 1.09 | 81.11 ± 1.06 | 90.39 ± 1.72 | 98.63 ± 0.30 | 99.80 ± 0.88 | 99.98 ± 0.30 |
7 | 85.40 ± 4.34 | 88.69 ± 1.98 | 90.08 ± 2.19 | 80.95 ± 1.35 | 83.12 ± 4.17 | 94.32 ± 0.76 | 99.75 ± 1.06 | 99.92 ± 0.68 |
8 | 77.35 ± 2.14 | 83.85 ± 0.97 | 84.40 ± 1.61 | 86.33 ± 2.03 | 84.91 ± 2.30 | 94.63 ± 0.81 | 97.15 ± 1.12 | 97.31 ± 1.54 |
9 | 91.55 ± 1.78 | 99.89± 0.58 | 99.31± 0.87 | 99.65 ± 0.18 | 99.88 ± 0.11 | 97.07 ± 0.93 | 99.64 ± 1.07 | 97.77 ± 0.58 |
AA | 89.57 ± 0.53 | 92.27 ± 0.39 | 92.57 ± 0.48 | 89.55 ± 0.19 | 90.35 ± 0.66 | 96.47 ± 0.30 | 98.98 ± 0.49 | 98.22 ± 0.25 |
OA | 91.78 ± 0.29 | 93.32 ± 0.27 | 93.80 ± 0.29 | 91.85 ± 0.18 | 93.02 ± 0.32 | 97.90 ± 0.14 | 98.87 ± 0.41 | 98.87 ± 0.14 |
KC | 0.8908 ± 0.0038 | 0.9112 ± 0.0036 | 0.9177 ± 0.0038 | 0.8314 ± 0.0023 | 0.9071 ± 0.0043 | 0.9722 ± 0.0019 | 0.9850 ± 0.0055 | 0.9850 ± 0.0019 |
1 | 99.91± 0.17 | 99.32± 0.02 | 99.29± 0.38 | 99.95 ± 0.05 | 99.94± 0.09 | 99.82 ± 0.08 | 99.89± 0.18 |
2 | 99.88 ± 0.23 | 99.97 ± 0.09 | 99.82 ± 0.14 | 99.79 ± 0.03 | 99.79 ± 0.12 | 99.99± 0.21 | 99.99± 0.12 |
3 | 98.88 ± 0.36 | 99.04 ± 0.29 | 99.21 ± 0.16 | 99.78 ± 0.12 | 99.83 ± 0.07 | 99.72 ± 0.21 | 99.96± 0.22 |
4 | 99.13 ± 0.48 | 99.76 ± 0.42 | 99.76 ± 0.30 | 99.12 ± 0.53 | 98.96 ± 0.50 | 97.93 ± 0.46 | 98.41 ± 0.18 |
5 | 99.05 ± 0.64 | 98.19 ± 0.56 | 99.13 ± 0.15 | 98.96 ± 0.32 | 99.50 ± 0.34 | 99.92 ± 0.42 | 99.17 ± 0.20 |
6 | 99.94 ± 0.20 | 99.92± 0.09 | 99.03± 0.06 | 99.83 ± 0.08 | 99.23 ± 0.20 | 99.98± 0.14 | 99.97 ± 0.05 |
7 | 99.94 ± 0.19 | 99.89± 0.14 | 99.95± 0.20 | 99.94 ± 0.09 | 99.81 ± 0.10 | 99.91 ± 0.13 | 99.91 ± 0.12 |
8 | 88.88 ± 0.92 | 87.55 ± 1.01 | 84.53 ± 1.12 | 90.09 ± 1.29 | 97.73 ± 0.91 | 99.25 ± 0.04 | 99.71 ± 0.60 |
9 | 99.44 ± 0.16 | 99.38 ± 0.14 | 99.34 ± 0.15 | 99.95 ± 0.20 | 99.91 ± 0.07 | 99.93 ± 0.29 | 99.99± 0.03 |
10 | 96.27 ± 0.53 | 98.19 ± 0.72 | 97.80 ± 0.82 | 98.61 ± 0.45 | 98.99 ± 0.44 | 99.49 ± 0.83 | 99.76 ± 0.87 |
11 | 99.03 ± 0.80 | 99.04 ± 0.74 | 99.68 ± 0.47 | 98.86 ± 0.41 | 99.97 ± 0.19 | 99.90 ± 1.08 | 99.97± 0.28 |
12 | 98.36 ± 0.14 | 98.86 ± 0.07 | 99.26 ± 0.15 | 99.97± 0.32 | 99.94 ± 0.49 | 99.71 ± 0.15 | 99.89 ± 0.13 |
13 | 99.52 ± 0.51 | 99.76 ± 0.25 | 99.76 ± 0.22 | 99.39 ± 0.29 | 99.43± 0.09 | 99.52 ± 0.60 | 99.96± 0.45 |
14 | 99.79 ± 1.02 | 98.43 ± 0.83 | 99.16 ± 0.58 | 96.78 ± 0.93 | 99.93 ± 1.23 | 99.27 ± 1.60 | 99.99± 0.15 |
15 | 84.51 ± 1.20 | 85.68 ± 1.54 | 83.23 ± 1.96 | 72.62 ± 2.44 | 97.38 ± 1.15 | 98.03 ± 1.64 | 97.75 ± 2.26 |
16 | 99.38 ± 0.30 | 99.75 ± 0.74 | 99.58± 1.15 | 98.65 ± 0.44 | 99.76± 0.97 | 99.08 ± 0.63 | 99.92± 0.80 |
AA | 97.62 ± 0.15 | 87.73 ± 0.12 | 97.54 ± 0.09 | 97.02 ± 0.12 | 99.49 ± 0.08 | 99.47 ± 0.26 | 99.66 ± 0.14 |
OA | 95.09 ± 0.17 | 95.08 ± 0.09 | 94.19 ± 0.12 | 93.91 ± 0.10 | 99.02 ± 0.20 | 99.40 ± 0.40 | 99.53 ± 0.34 |
KC | 0.9453 ± 0.0019 | 0.9452 ± 0.0010 | 0.9353 ± 0.0013 | 0.9321 ± 0.0011 | 0.9890 ± 0.0022 | 0.9933 ± 0.0045 | 0.9948 ± 0.0038 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Ulfarsson, M.O.; Sveinsson, J.R.; Chanussot, J. Unsupervised and Supervised Feature Extraction Methods for Hyperspectral Images Based on Mixtures of Factor Analyzers. Remote Sens. 2020, 12, 1179. https://doi.org/10.3390/rs12071179
Zhao B, Ulfarsson MO, Sveinsson JR, Chanussot J. Unsupervised and Supervised Feature Extraction Methods for Hyperspectral Images Based on Mixtures of Factor Analyzers. Remote Sensing. 2020; 12(7):1179. https://doi.org/10.3390/rs12071179
Chicago/Turabian StyleZhao, Bin, Magnus O. Ulfarsson, Johannes R. Sveinsson, and Jocelyn Chanussot. 2020. "Unsupervised and Supervised Feature Extraction Methods for Hyperspectral Images Based on Mixtures of Factor Analyzers" Remote Sensing 12, no. 7: 1179. https://doi.org/10.3390/rs12071179
APA StyleZhao, B., Ulfarsson, M. O., Sveinsson, J. R., & Chanussot, J. (2020). Unsupervised and Supervised Feature Extraction Methods for Hyperspectral Images Based on Mixtures of Factor Analyzers. Remote Sensing, 12(7), 1179. https://doi.org/10.3390/rs12071179