Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands
Abstract
:1. Introduction
2. Methods
2.1. Study Areas
2.1.1. Barotseland, Western Zambia
2.1.2. Zambezi Region, Namibia
2.1.3. Okavango Delta, Botswana
2.1.4. Kilombero Valley, United Republic of Tanzania
2.1.5. Southern African Countries
2.2. Datasets
2.3. The TropWet Approach
2.3.1. Linear Spectral Unmixing
2.3.2. Automatic Endmember Selection
2.3.3. Accounting for Burn Regions
2.3.4. Terrain Based Masks
2.3.5. Surface Water Mapping Toolset and Exports
- (1)
- The Thematic Classification tool generates a median composite of cloud free Landsat 5, 7, or 8 for a designated date range and geographical area. Spectral endmembers are found and unmixing applied to determine the proportion (%) of water, vegetation, and sand for each pixel. This ‘fraction image’ is used to generate a thematic classification: (a) mixed, (b) emergent flooded vegetation, (c) wet bare sand, (d) dry sparse vegetation, (e) open water, (f) dense vegetation, and (g) dry bare sand, using rule-based thresholding.
- (2)
- The Water Frequency tool generates a binary water extent layer, for every cloud free Landsat 5, 7, or 8 within a given date range. These binary layers are summed to produce a frequency of inundation, where the summed value represents the total number of times that water has been detected within the available images. This layer is expressed as a percentage.
- (3)
- The Water Fraction Annual Statistics tool is used to generate annual statistics for a particular area of interest. Specifically, for each month within the given year, a median composite is generated from cloud free Landsat 5, 7, or 8, the endmembers are calculated, and unmixing applied. The resulting bi-monthly fractional coverage images are classified (using the rules described in Table 3 to determine areas of inundated vegetation and open water. The total number of pixels for each class are then found and expressed as area coverage. This tool also outputs the number proportion of no data pixels, so that users can decide to ignore results where there are insufficient cloud free pixels available. The overall process is computationally intensive and is limited to run on a single year. Multiple years can be analysed by running the tool several times.
- (4)
- The Quarterly Thematic Classification tool is similar to the main classification tool but is designed to operate over a single year, and will return three monthly classified images for that year showing intra-annual change. The tool uses Landsat 5, 7, or 8 cloud free images for the periods: (a) January, February, and March; (b) April, May, and June; (c) July, August, and September; and (d) October, November, and December. These composite images are presented in GEE as clickable thumbnails that can added to the map for detailed analysis.
2.3.6. Thematic Classification
2.4. Accuracy Assessment
3. Results
3.1. Classification Accuracy
3.1.1. Barotseland
3.1.2. Okavango Delta
3.1.3. Zambezi Region, Namibia
3.1.4. Southern Africa
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Twele, A.; Cao, W.; Plank, S.; Martinis, S.; Cao, W.; Plank, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540. [Google Scholar] [CrossRef] [Green Version]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.; Jones, J.; Creed, I.; Carroll, M. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Hardy, A.; Ettritch, G.; Cross, D.E.; Bunting, P.; Thomas, C.C.; Liywalii, F.; Sakala, J.; Silumesii, A.; Singini, D.; Smith, M.; et al. Automatic detection of open and vegetated water bodies using Sentinel 1 to map African malaria vector mosquito breeding habitats. Remote Sens. 2019, 11, 593. [Google Scholar] [CrossRef] [Green Version]
- Bøgh, C.; Lindsay, S.W.S.; Clarke, S.E.S.; Dean, A.; Jawara, M.; Pinder, M.; Thomas, C.J. High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using Landsat TM satellite imagery. Am. J. Trop. Med. Hyg. 2007, 76, 875–881. [Google Scholar] [CrossRef]
- Behnamian, A.; Banks, S.; White, L.; Brisco, B.; Millard, K.; Pasher, J.; Chen, Z.; Duffe, J.; Bourgeau-Chavez, L.; Battaglia, M. Semi-Automated Surface Water Detection with Synthetic Aperture Radar Data: A Wetland Case Study. Remote Sens. 2017, 9, 1209. [Google Scholar] [CrossRef] [Green Version]
- Schlaffer, S.; Chini, M.; Dettmering, D.; Wagner, W. Mapping Wetlands in Zambia Using Seasonal Backscatter Signatures Derived from ENVISAT ASAR Time Series. Remote Sens. 2016, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Clewley, D.; Whitcomb, J.; Moghaddam, M.; McDonald, K.; Chapman, B.; Bunting, P. Evaluation of ALOS PALSAR data for high-resolution mapping of vegetated wetlands in Alaska. Remote Sens. 2015, 7, 7272–7297. [Google Scholar] [CrossRef] [Green Version]
- Brisco, B.; Li, K.; Tedford, B.; Charbonneau, F.; Yun, S.; Murnaghan, K. Compact polarimetry assessment for rice and wetland mapping. Int. J. Remote Sens. 2013, 34, 1949–1964. [Google Scholar] [CrossRef] [Green Version]
- Bwangoy, J.-R.B.; Hansen, M.C.; Roy, D.P.; De Grandi, G.; Justice, C.O. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Borges, A.V.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Geeraert, N.; Omengo, F.O.; Guérin, F.; Lambert, T.; Morana, C.; et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 2015, 8, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef]
- Schroeder, R.; McDonald, K.; Chapman, B.; Jensen, K.; Podest, E.; Tessler, Z.; Bohn, T.; Zimmermann, R. Development and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave Remote Sensing Data. Remote Sens. 2015, 7, 16688–16732. [Google Scholar] [CrossRef] [Green Version]
- Poulter, B.; Bousquet, P.; Canadell, J.G.; Ciais, P.; Peregon, A.; Saunois, M.; Arora, V.K.; Beerling, D.J.; Brovkin, V.; Jones, C.D.; et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 2017, 12, 094013. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. 2010, 115, D12111. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Galantowicz, J.; Kim, S.-B.; Chan, S.K.; Reichle, R.; Jones, L.A.; Watts, J.D. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 2018, 213, 1–17. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Podest, E.; Jensen, K.; McDonald, K.C. Classifying Inundation in a Tropical Wetlands Complex with GNSS-R. Remote Sens. 2019, 11, 1053. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.; Chew, C.; Reager, J.T.; Shah, R.; Zuffada, C. A novel approach to monitoring wetland dynamics using CYGNSS: Everglades case study. Remote Sens. Environ. 2019, 233, 111417. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Zuffada, C.; Shah, R.; Chew, C.; Lowe, S.T.; Mannucci, A.J.; Cardellach, E.; Brakenridge, G.R.; Geller, G.; Rosenqvist, A. Wetland monitoring with Global Navigation Satellite System reflectometry. Earth Sp. Sci. 2017, 4, 16–39. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; McDonald, K.; Podest, E.; Rodriguez-Alvarez, N.; Horna, V.; Steiner, N. Assessing L-Band GNSS-Reflectometry and Imaging Radar for Detecting Sub-Canopy Inundation Dynamics in a Tropical Wetlands Complex. Remote Sens. 2018, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, S.V.; Rigor, I.G.; Perovich, D.K.; Clemente-Colon, P.; Weatherly, J.W.; Neumann, G. Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1658–1670. [Google Scholar] [CrossRef]
- Mason, D.C.; Davenport, I.J.; Neal, J.C.; Schumann, G.J.-P.; Bates, P.D. Near Real-Time Flood Detection in Urban and Rural Areas Using High-Resolution Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3041–3052. [Google Scholar] [CrossRef] [Green Version]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.-P.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth, Parts A/B/C 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Martinis, S.; Plank, S.; Ćwik, K. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sens. 2018, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.J.; Cottam, A.; Gorelick, N.; Belward, A.S.A. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Hess, L.L.; Melack, J.M.; Novo, E.M.L.; Barbosa, C.C.; Gastil, M. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Martinez, J.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Plank, S.; Jüssi, M.; Martinis, S.; Twele, A. Mapping of flooded vegetation by means of polarimetric Sentinel-1 and ALOS-2/PALSAR-2 imagery. Int. J. Remote Sens. 2017, 38, 3831–3850. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~ 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2018, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Ettritch, G.; Bunting, P.; Jones, G.; Hardy, A. Monitoring the coastal zone using earth observation: Application of linear spectral unmixing to coastal dune systems in Wales. Remote Sens. Ecol. Conserv. 2018, 4, 303–319. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Klein, I.; Dietz, A.; Gessner, U.; Dech, S.; Kuenzer, C. Results of the Global WaterPack: a novel product to assess inland water body dynamics on a daily basis. Remote Sens. Lett. 2015, 6, 78–87. [Google Scholar] [CrossRef]
- Fer, I.; Tietjen, B.; Jeltsch, F.; Wolff, C. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario. Biogeosciences 2017, 14, 4355–4374. [Google Scholar] [CrossRef] [Green Version]
- Hoell, A.; Gaughan, A.E.; Shukla, S.; Magadzire, T.; Hoell, A.; Gaughan, A.E.; Shukla, S.; Magadzire, T. The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa. J. Hydrometeorol. 2017, 18, 2407–2424. [Google Scholar] [CrossRef]
- Cai, X.; Haile, A.T.; Magidi, J.; Mapedza, E.; Nhamo, L. Living with floods – Household perception and satellite observations in the Barotse floodplain, Zambia. Phys. Chem. Earth, Parts A/B/C 2017, 100, 278–286. [Google Scholar] [CrossRef]
- Burrough, S.L.; Thomas, D.S.G.G.; Oriojemie, E.A.; Willis, K.J.; Orijemie, E.A.; Willis, K.J. Landscape sensitivity and ecological change in western Zambia: The long-term perspective from dambo cut-and-fill sediments. J. Quat. Sci. 2015, 30, 44–58. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; O’Connor, P.W.; Bateman, M.D.; Shaw, P.A.; Stokes, S.; Nash, D.J. Dune activity as a record of late Quaternary aridity in the Northern Kalahari: New evidence from northern Namibia interpreted in the context of regional arid and humid chronologies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 156, 243–259. [Google Scholar] [CrossRef]
- Burke, J.; Pricope, N.; Blum, J. Thermal Imagery-Derived Surface Inundation Modeling to Assess Flood Risk in a Flood-Pulsed Savannah Watershed in Botswana and Namibia. Remote Sens. 2016, 8, 676. [Google Scholar] [CrossRef] [Green Version]
- Pricope, N.G. Variable-source flood pulsing in a semi-arid transboundary watershed: the Chobe River, Botswana and Namibia. Environ. Monit. Assess. 2013, 185, 1883–1906. [Google Scholar] [CrossRef]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Wolski, P.; Stone, D.; Tadross, M.; Wehner, M.; Hewitson, B. Attribution of floods in the Okavango basin, Southern Africa. J. Hydrol. 2014, 511, 350–358. [Google Scholar] [CrossRef]
- Alegana, V.A.; Atkinson, P.M.; Wright, J.A.; Kamwi, R.; Uusiku, P.; Katokele, S.; Snow, R.W.; Noor, A.M. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial–temporal models. Spat. Spatiotemporal. Epidemiol. 2013, 7, 25–36. [Google Scholar] [CrossRef]
- Mumbengegwi, D.R.; Sturrock, H.; Hsiang, M.; Roberts, K.; Kleinschmidt, I.; Nghipumbwa, M.; Uusiku, P.; Smith, J.; Bennet, A.; Kizito, W.; et al. Is there a correlation between malaria incidence and IRS coverage in western Zambezi region, Namibia? Public Heal. Action 2018, 8, S44–S49. [Google Scholar] [CrossRef] [Green Version]
- Gumbricht, T.; McCarthy, J.; McCarthy, T.S. Channels, wetlands and islands in the Okavango Delta, Botswana, and their relation to hydrological and sedimentological processes. Earth Surf. Process. Landforms 2004, 29, 15–29. [Google Scholar] [CrossRef]
- McCarthy, J.M.; Gumbricht, T.; McCarthy, T.; Frost, P.; Wessels, K.; Seidel, F. Flooding Patterns of the Okavango Wetland in Botswana between 1972 and 2000. AMBIO A J. Hum. Environ. 2003, 32, 453–457. [Google Scholar] [CrossRef]
- McCarthy, J.; Gumbricht, T.; McCarthy, T.S. Ecoregion classification in the Okavango Delta, Botswana from multitemporal remote sensing. Int. J. Remote Sens. 2005, 26, 4339–4357. [Google Scholar] [CrossRef]
- Gieske, A. Modelling outflow from the Jao/Boro River system in the Okavango Delta, Botswana. J. Hydrol. 1997, 193, 214–239. [Google Scholar] [CrossRef]
- Milzow, C.; Burg, V.; Kinzelbach, W. Estimating future ecoregion distributions within the Okavango Delta Wetlands based on hydrological simulations and future climate and development scenarios. J. Hydrol. 2010, 381, 89–100. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Stevens, F.R.; Gibbes, C.; Southworth, J.; Binford, M.W. Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. Int. J. Remote Sens. 2012, 33, 6783–6804. [Google Scholar] [CrossRef]
- Ngwenya, B.N.; Thakadu, O.T.; Magole, L.; Chimbari, M.J. Memories of environmental change and local adaptations among molapo farming communities in the Okavango Delta, Botswana—A gender perspective. Acta Trop. 2017, 175, 31–41. [Google Scholar] [CrossRef]
- Kgathi, D.L.; Ngwenya, B.N.; Wilk, J. Shocks and rural livelihoods in the Okavango Delta, Botswana. Dev. South. Afr. 2007, 24, 289–308. [Google Scholar] [CrossRef]
- Chirebvu, E.; Chimbari, M.J. Characterization of an Indoor-Resting Population of Anopheles arabiensis (Diptera: Culicidae) and the Implications on Malaria Transmission in Tubu Village in Okavango Subdistrict, Botswana. J. Med. Entomol. 2016, 53, 569–576. [Google Scholar] [CrossRef]
- Hardy, A.J.; Gamarra, J.G.P.; Cross, D.E.; Macklin, M.G.; Smith, M.W.; Kihonda, J.; Killeen, G.F.; Ling’ala, G.N.; Thomas, C.J.; Ling’ala, G.N.; et al. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa. PLoS One 2013, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Charlwood, J.D.; Kihonda, J.; Sama, S.; Billingsley, P.F.; Hadji, H.; Verhave, J.P.; Lyimo, E.; Luttikhuizen, P.C.; Smith, T. The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull. Entomol. Res. 1995, 85, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Killeen, G.F.; Tami, A.; Kihonda, J.; Okumu, F.; Kotas, M.; Grundmann, H.; Kasigudi, N.; Ngonyani, H.; Mayagaya, v.; Nathan, R.; et al. Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania. BMC Infect. Dis. 2007, 7. [Google Scholar] [CrossRef] [Green Version]
- Nindi, S.J.; Maliti, H.; Bakari, S.; Kija, H.; Machoke, M. Conflicts over Land and Water in the Kilombero Valley Floodplain, Tanzania. Afr. Study Monogr. 2014, 50, 173–190. [Google Scholar]
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Steinbach, S.; Seregina, L.; Thonfeld, F.; van der Linden, R. Hydrological Modeling in Data-Scarce Catchments: The Kilombero Floodplain in Tanzania. Water 2018, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Hoell, A.; Funk, C.; Zinke, J.; Harrison, L. Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean Dipole. Clim. Dyn. 2017, 48, 2529–2540. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Remote Sensing of Environment Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Filho, R.A.; Roberts, D.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions and endmembers: applications to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–152. [Google Scholar] [CrossRef]
- Kerdiles, H.; Grondona, M.O. NOAA-AVHRR NDVI decomposition and subpixel classification using linear mixing in the Argentinean Pampa. Int. J. Remote Sens. 1995, 16, 1303–1325. [Google Scholar] [CrossRef]
- Roberts, D.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sens. Environ. 2003, 87, 123–135. [Google Scholar] [CrossRef]
- Chang, C.I.; Plaza, A. A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci. Remote Sens. Lett. 2006, 3, 63–67. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Jia, X.; Wu, J. Impact of collinearity on linear and nonlinear spectral mixture analysis. In Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Gimnig, J.E.; Ombok, M.; Kamau, L.; Hawley, W.A. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J. Med. Entomol. 2001, 38, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Akoko, E.; Atekwana, E.A.; Cruse, A.M.; Molwalefhe, L.; Masamba, W.R.L. River-wetland interaction and carbon cycling in a semi-arid riverine system: the Okavango Delta, Botswana. Biogeochemistry 2013, 114, 359–380. [Google Scholar] [CrossRef]
- WHO. Response to the 2009 Floods Emergency in Namibia Preventing Diseases, Saving Lives; Windhoek; 2010; Available online: https://reliefweb.int/report/namibia/who-response-2009-floods-emergency-namibia-preventing-diseases-saving-lives (accessed on 2 August 2019).
- UNOSAT Flood waters over the affected region of Caprivi, Namibia. Available online: http://unosat-maps.web.cern.ch/unosat-maps/NA/Floods2009/Unosat_Namibia_ASAR_FloodV1_Region_20March09_lowres.pdf (accessed on 2 August 2019).
- Nicholson, S.E.; Entekhabi, D. The quasi-periodic behavior of rainfall variability in Africa and its relationship to the southern oscillation. Arch. Meteorol. Geophys. Bioclimatol. Ser. A 1986, 34, 311–348. [Google Scholar] [CrossRef]
- Archer, E.R.M.; Landman, W.A.; Tadross, M.A.; Malherbe, J.; Weepener, H.; Maluleke, P.; Marumbwa, F.M. Understanding the evolution of the 2014–2016 summer rainfall seasons in southern Africa: Key lessons. Clim. Risk Manag. 2017, 16, 22–28. [Google Scholar] [CrossRef]
- Archer, E.; Landman, W.; Malherbe, J.; Tadross, M.; Pretorius, S. South Africa’s winter rainfall region drought: A region in transition? Clim. Risk Manag. 2019, 25, 100188. [Google Scholar] [CrossRef]
- Fynn, R.W.S.; Murray-Hudson, M.; Dhliwayo, M.; Scholte, P. African wetlands and their seasonal use by wild and domestic herbivores. Wetl. Ecol. Manag. 2015, 23, 559–581. [Google Scholar] [CrossRef]
- RAMSAR Information sheet on Ramsar wetlands; Gland, Switzerland, 2006. Available online: https://rsis.ramsar.org/RISapp/files/RISrep/KZ1863RIS.pdf (accessed on 2 August 2019).
- Coesel, P.F.M.; van Geest, A. New or otherwise interesting desmid taxa from the Bangweulu region (Zambia). 1. Genera Micrasterias and Allorgeia (Desmidiales). Plant Ecol. Evol. 2014, 147, 392–404. [Google Scholar] [CrossRef] [Green Version]
- Walther, B.A. A review of recent ecological changes in the Sahel, with particular reference to land-use change, plants, birds and mammals. Afr. J. Ecol. 2016, 54, 268–280. [Google Scholar] [CrossRef]
- Ahmady-Birgani, H.; McQueen, K.G.; Moeinaddini, M.; Naseri, H. Sand dune encroachment and desertification processes of the rigboland Sand Sea, Central Iran. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Ganawa, E.T.; Elmahl, A.A. Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Landsat imagery. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, S21–S29. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, Q.; Shen, Y.P.; Zhou, N.; Wang, X.S.; Li, J.; Jia, W.R. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Sci. Total Environ. 2018, 619–620, 1648–1659. [Google Scholar] [CrossRef]
- Ward, D.P.; Petty, A.; Setterfield, S.A.; Douglas, M.M.; Ferdinands, K.; Hamilton, S.K.; Phinn, S. Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing. Remote Sens. Environ. 2014, 147, 43–55. [Google Scholar] [CrossRef]
- Kwoun, O.; Lu, Z. Multi-temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal Wetlands in Southeastern Louisiana. Photogramm. Eng. Remote Sens. 2009, 75, 607–617. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Dongus, S.; Nyika, D.; Kannady, K.; Mtasiwa, D.; Mshinda, H.; Fillinger, U.; Drescher, A.W.; Tanner, M.; Castro, M.C.; Killeen, G.F. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int. J. Health Geogr. 2007, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majambere, S.; Pinder, M.; Fillinger, U.; Ameh, D.; Conway, D.J.; Green, C.; Jeffries, D.; Jawara, M.; Milligan, P.J.; Hutchinson, R.; et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in the Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 2010, 82, 176–184. [Google Scholar] [CrossRef] [PubMed]
Endmember | NDVI | mNDWI |
---|---|---|
Water | - | >0.5 |
Vegetation | >0.7 | - |
Sand | >0.16 < 0.17 | >−0.28 < 0.26 |
ID | Exportable Output |
---|---|
Thematic Classification | (i) Fraction image (%) (ii)Classified image (mixed; emergent flooded vegetation; wet bare sand; dry sparse vegetation; open water; dense vegetation; dry bare sand) (iii) Median composite image |
Water Frequency | (i) Frequency of inundation (%) (ii) Mean fraction composite |
Water Fraction Annual Statistics | (i) Chart and data with bi-monthly totals of open water and inundated vegetation area (number of pixels), alongside % of no data pixels |
Quarterly Thematic Classifications | (i) 3 Monthly Composite Fraction Images (%) (ii) 3 Monthly Classified Images (mixed; emergent flooded vegetation; wet bare sand; dry sparse vegetation; open water; dense vegetation; dry bare sand) |
Class | Class ID | Threshold (%) |
---|---|---|
Emergent Flooded Vegetation | EFV | WV ≥ 75 and V ≥ 25 < 75 and W ≥ 25 < 75 |
Wet Bare Sand | WBS | WS ≥ 75 and W ≥ 25 < 75 and S ≥ 25 < 75 |
Dry Sparse Vegetation | DSV | VS ≥ 75 and V ≥ 25 < 75 and S ≥ 25 < 75 |
Open Water | OW | W ≥ 75 |
Dense Vegetation | GV | V ≥ 75 |
Dry Bare Sand | DBS | S ≥ 75 |
Mixed/Other | M | - |
Region | Date | Season Description |
---|---|---|
Barotseland | 07/08/2017 | Dry season following recession of seasonal floodwaters |
08/09/2017 | Dry season following recession of seasonal floodwaters | |
24/09/2017 | Dry season following recession of seasonal floodwaters | |
14/01/2018 | Rainy season prior to peak flow conditions within the floodplain | |
20/04/2018 | Peak flow conditions within the floodplain | |
06/05/2018 | Peak flow conditions within the floodplain | |
Kilombero Valley | 16/09/2017 | Dry season |
30/05/2018 | Wet season | |
Zambezi Region | 04/10/2017 | Dry season |
15/05/2018 | Wet season | |
Okavango Delta | 07/08/2017 | Dry season |
06/05/2018 | Wet season |
Test Site | No. Points Per Class | No. Images | Site Total |
---|---|---|---|
Barotseland | 100 | 6 | 3600 |
Kilombero Valley | 200 | 2 | 2400 |
Zambezi Region | 200 | 2 | 2400 |
Okavango Delta | 200 | 2 | 2400 |
Total | 10,800 |
Date | ROI (sub-region) | OA (%) | kappa | Q | A | C | D |
---|---|---|---|---|---|---|---|
07/08/2017 | Barotse (1) | 90.2 | 0.87 | 0.20 | 0.01 | 0.79 | 0.21 |
Barotse (2) | 90.69 | 0.88 | 0.13 | 0.01 | 0.87 | 0.13 | |
08/09/2017 | Barotse (1) | 90.69 | 0.88 | 0.12 | 0.03 | 0.87 | 0.13 |
Barotse (2) | 93.14 | 0.91 | 0.03 | 0.02 | 0.96 | 0.04 | |
24/09/2017 | Barotse (1) | 90.69 | 0.88 | 0.12 | 0.03 | 0.86 | 0.14 |
Barotse (2) | 89.22 | 0.86 | 0.22 | 0.03 | 0.76 | 0.24 | |
14/01/2018 | Barotse (1) | 90.2 | 0.87 | 0.13 | 0.01 | 0.86 | 0.14 |
Barotse (2) | 87.75 | 0.84 | 0.20 | 0.00 | 0.80 | 0.20 | |
20/04/2018 | Barotse (1) | 95.1 | 0.93 | 0.07 | 0.00 | 0.92 | 0.08 |
Barotse (2) | 90.1 | 0.87 | 0.10 | 0.02 | 0.88 | 0.12 | |
06/05/2018 | Barotse (1) | 87.25 | 0.83 | 0.10 | 0.04 | 0.86 | 0.14 |
Barotse (2) | 88.94 | 0.85 | 0.07 | 0.04 | 0.89 | 0.11 | |
16/09/2017 | Kilombero | 95.43 | 0.94 | 0.08 | 0.00 | 0.91 | 0.09 |
30/05/2018 | Kilombero | 91.67 | 0.9 | 0.09 | 0.00 | 0.91 | 0.09 |
04/10/2017 | Caprivi | 90.1 | 0.87 | 0.00 | 0.02 | 0.99 | 0.01 |
15/05/2018 | Caprivi | 95.92 | 0.95 | 0.01 | 0.00 | 0.98 | 0.02 |
07/08/2017 | Okavango | 92.48 | 0.91 | 0.04 | 0.01 | 0.96 | 0.04 |
06/05/2018 | Okavango | 88.12 | 0.85 | 0.10 | 0.01 | 0.89 | 0.11 |
Mean | 91.0 | 0.88 | 0.10 | 0.02 | 0.89 | 0.11 | |
Std. dev. | 2.6 | 0.03 | 0.06 | 0.01 | 0.06 | 0.06 |
W | S | FV | V | User (%) | |
---|---|---|---|---|---|
W | 27.22 | 0.65 | 1.32 | 0.00 | 93.29 |
S | 1.06 | 27.23 | 0.05 | 0.65 | 94.09 |
FV | 2.00 | 0.20 | 26.67 | 0.32 | 90.85 |
V | 0.13 | 1.53 | 1.34 | 31.67 | 93.07 |
Producer (%) | 88.05 | 94.53 | 90.37 | 97.85 | 92.41 |
OA (%) | 92.41 | ||||
kappa | 0.89 |
Two-Month Block | n | Mean | Min | Max | St. Dev. |
---|---|---|---|---|---|
Jan–Feb | 17 | 543 | 1 | 1477 | 440 |
Mar–Apr | 24 | 810 | 2 | 1865 | 497 |
May–Jun | 22 | 1354 | 663 | 2383 | 485 |
Jul–Aug | 22 | 1380 | 510 | 2280 | 412 |
Sep–Oct | 23 | 827 | 5 | 1480 | 387 |
Nov–Dec | 16 | 296 | 6 | 923 | 245 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardy, A.; Oakes, G.; Ettritch, G. Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands. Remote Sens. 2020, 12, 1182. https://doi.org/10.3390/rs12071182
Hardy A, Oakes G, Ettritch G. Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands. Remote Sensing. 2020; 12(7):1182. https://doi.org/10.3390/rs12071182
Chicago/Turabian StyleHardy, Andy, Gregory Oakes, and Georgina Ettritch. 2020. "Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands" Remote Sensing 12, no. 7: 1182. https://doi.org/10.3390/rs12071182
APA StyleHardy, A., Oakes, G., & Ettritch, G. (2020). Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands. Remote Sensing, 12(7), 1182. https://doi.org/10.3390/rs12071182