Exploring the Combined Effect of Urbanization and Climate Variability on Urban Vegetation: A Multi-Perspective Study Based on More than 3000 Cities in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identify the Spatial Range of Cities
2.2. Metric of Urban Vegetation Cover
2.3. Measuring the Influencing Factors
3. Econometric Model
4. Results
4.1. Spatiotemporal Dynamics of Urban Vegetation and Influencing Factors for All Natural Cities in China
4.2. Panel Regression Results at the National Scale
4.3. The Relationships between NDVI and Influencing Factors with Different Geographical Locations
4.4. The Relationships between NDVI and Influencing Factors with Different Urban Characteristics
5. Discussions
5.1. Impact of Urbanization and Climate Factors from a National Perspective
5.2. The Reasons and Implications of the Influence by Geographical Location
5.3. The Reasons and Implications of the Influence by Urbanization Characteristics
5.4. Limitations and Future Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Coefficient | ||||
---|---|---|---|---|
Fixed Effect | Random Effect | Difference | S.E. | |
ln(PREC) | 0.043 | 0.064 | −0.021 | 0.003 |
ln(SHUM) | 0.222 | 0.289 | −0.067 | 0.014 |
ln(SRAD) | 0.118 | 0.146 | −0.027 | 0.016 |
ln(TEMP) | 8.178 | 2.985 | 5.193 | 0.567 |
ln(FRAC) | −0.448 | −0.092 | −0.356 | 0.033 |
ln(AREA) | 0.013 | 0.005 | 0.008 | 0.002 |
ln(NLI) | −0.080 | −0.090 | 0.010 | 0.001 |
ln(POPDEN) | −0.026 | −0.003 | −0.024 | 0.015 |
Cons. | −37.001 | −7.489 | −29.512 | 3.152 |
Chi2 | 335.000 | |||
Prob. | 0.000 |
References
- Robinson, S.L.; Lundholm, J.T. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosyst. 2012, 15, 545–557. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on Landsat data. Sci. Total Environ. 2017, 605, 721–734. [Google Scholar] [CrossRef]
- Ren, Y.; Qu, Z.; Du, Y.; Xu, R.; Ma, D.; Yang, G.; Shi, Y.; Fan, X.; Tani, A.; Guo, P.; et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies. Environ. Pollut. 2017, 230, 849–861. [Google Scholar] [CrossRef]
- Bell, J.F.; Wilson, J.S.; Liu, G.C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 2008, 35, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, V.; Johnson Gaither, C.; Gragg, R.S. Promoting environmental justice through urban green space access: A synopsis. Environ. Justice 2012, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.B.; Egerer, M.H. Global social and environmental change drives the management and delivery of ecosystem services from urban gardens: A case study from Central Coast, California. Glob. Environ. Chang. 2020, 60, 102006. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Hutyra, L. Detecting carbon signatures of development patterns across a gradient of urbanization: Linking observations, models, and scenarios. In Proceedings of the 5th Urban Research Symposium on Cities and Climate Change: Responding to an Urgent Agenda, Marseille, France, 28–30 June 2009. [Google Scholar]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Gren, A.; Barton, D.; Langemeyer, J.; McPhearson, T.; O’Farrell, P. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 175–239. [Google Scholar]
- Weng, Q. Remote sensing of urban biophysical environments. In Advances in Environmental Remote Sensing Sensors, Algorithms, and Applications; CRC Press: Boca Raton, FL, USA, 2011; pp. 525–546. [Google Scholar]
- Assessment, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2003; pp. 71–84. [Google Scholar]
- Slemp, C.; Davenport, M.A.; Seekamp, E.; Brehm, J.M.; Schoonover, J.E.; Williard, K.W.J. “Growing too fast:” Local stakeholders speak out about growth and its consequences for community well-being in the urban–rural interface. Landsc. Urban Plan. 2012, 106, 139–148. [Google Scholar] [CrossRef]
- Satterthwaite, D.; Archer, D.; Colenbrander, S.; Dodman, D.; Hardoy, J.; Mitlin, D.; Patel, S. Building Resilience to Climate Change in Informal Settlements. One Earth 2020, 2, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liang, Z.; Li, S. Relationships between urban development level and urban vegetation states: A global perspective. Urban For. Urban Green. 2019, 38, 215–222. [Google Scholar] [CrossRef]
- Vargas-Hernández, J.G.; Pallagst, K.M. Implications of Urban Sustainability, Socio-Ecosystems, and Ecosystem Services. In Current State and Future Impacts of Climate Change on Biodiversity; IGI Global: Hershey, PA, USA, 2020; pp. 31–53. [Google Scholar]
- Guarini, M.R.; Nestico, A.; Morano, P.; Sica, F. Eco-system Services and Integrated Urban Planning. A Multi-criteria Assessment Framework for Ecosystem Urban Forestry Projects. In Values and Functions for Future Cities; Springer: Cham, Switzerland, 2020; pp. 201–216. [Google Scholar]
- Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004, 89, 434–443. [Google Scholar]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L.; Enerette, G.D. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Zhao, S.; Liu, S. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Chang. Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci. Total Environ. 2014, 488, 136–145. [Google Scholar] [CrossRef]
- Gregg, J.W.; Jones, C.G.; Dawson, T.E. Urbanization effects on tree growth in the vicinity of New York City. Nature 2003, 424, 183–187. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, L12209. [Google Scholar] [CrossRef]
- Hubacek, K.; Kronenberg, J. Synthesizing different perspectives on the value of urban ecosystem services. Landsc. Urban Plan. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Vandermeulen, V.; Verspecht, A.; Vermeire, B.; Van Huylenbroeck, G.; Gellynck, X. The use of economic valuation to create public support for green infrastructure investments in urban areas. Landsc. Urban Plan. 2011, 103, 198–206. [Google Scholar] [CrossRef]
- Manninen, S.; Forss, S.; Venn, S. Management mitigates the impact of urbanization on meadow vegetation. Urban Ecosyst. 2010, 13, 461–481. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Sathyakumar, V.; Ramsankaran, R.; Bardhan, R. Geospatial approach for assessing spatiotemporal dynamics of urban green space distribution among neighbourhoods: A demonstration in Mumbai. Urban For. Urban Green. 2020, 48, 126585. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Du, J.; Fu, Q.; Fang, S.; Wu, J.; He, P.; Quan, Z. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol. Indic. 2019, 107, 105458. [Google Scholar] [CrossRef]
- Engelfriet, L.; Koomen, E. The impact of urban form on commuting in large Chinese cities. Transportation 2018, 45, 1269–1295. [Google Scholar] [CrossRef] [Green Version]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Does Urban Form Affect Urban NO2? Satellite-Based Evidence for More than 1200 Cities. Environ. Sci. Technol. 2017, 51, 12707–12716. [Google Scholar] [CrossRef]
- Travisi, C.M.; Camagni, R.; Nijkamp, P. Impacts of urban sprawl and commuting: A modelling study for Italy. J. Transp. Geogr. 2010, 18, 382–392. [Google Scholar] [CrossRef]
- Miller, M.D. The impacts of Atlanta’s urban sprawl on forest cover and fragmentation. Appl. Geogr. 2012, 34, 171–179. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Chen, A.; Ma, Y.; Cui, M.; Piao, S. NDVI indicated characteristics of vegetation cover change in China’s metropolises over the last three decades. Environ. Monit. Assess. 2011, 179, 1–14. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 1997, 78, 953–958. [Google Scholar] [CrossRef]
- Myneni, R.B.; Dong, J.; Tucker, C.J.; Kaufmann, R.K.; Kauppi, P.E.; Liski, J.; Zhou, L.; Alexeyev, V.; Hughes, M.K. A large carbon sink in the woody biomass of Northern forests. Proc. Natl. Acad. Sci. USA 2001, 98, 14784–14789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, K.; Prince, S.; Reshef, I. Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J. Arid. Environ. 2008, 72, 1940–1949. [Google Scholar] [CrossRef]
- Hartter, J.; Ryan, S.J.; Southworth, J.; Chapman, C.A. Landscapes as continuous entities: Forest disturbance and recovery in the Albertine Rift landscape. Landsc. Ecol. 2011, 26, 877. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, L.; West, G. A unified theory of urban living. Nature 2010, 467, 912–913. [Google Scholar] [CrossRef]
- Taubenböck, H.; Esch, T.; Felbier, A.; Wiesner, M.; Roth, A.; Dech, S. Monitoring urbanization in mega cities from space. Remote Sens. Environ. 2012, 117, 162–176. [Google Scholar] [CrossRef]
- Zou, H.; Duan, X.; Ye, L.; Wang, L. Locating Sustainability Issues: Identification of Ecological Vulnerability in Mainland China’s Mega-Regions. Sustainability 2017, 9, 1179. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Bauer, P.; Geiss, C.; Wurm, M. Mega-regions in China—A spatial analysis of settlement patterns using Earth observation data. In Proceedings of the Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017. [Google Scholar]
- Shafizadeh Moghadam, H.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, A.H.; Sowmyashree, M.V. Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manag. 2015, 148, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Long, Y.; Wu, P.; Wang, X. Are all cities with similar urban form or not? Redefining cities with ubiquitous points of interest and evaluating them with indicators at city and block levels in China. Int. J. Geogr. Inf. Sci. 2018, 32, 2447–2476. [Google Scholar]
- Liang, Z.; Wu, S.; Wang, Y.; Wei, F.; Huang, J.; Shen, J.; Li, S. The relationship between urban form and heat island intensity along the urban development gradients. Sci. Total Environ. 2019, 708, 135011. [Google Scholar] [CrossRef]
- A, D.; Zhao, W.; Qua, X.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res.-Atmos. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. World energy consumption pattern as revealed by DMSP-OLS nighttime light imagery. GISci. Remote Sens. 2015, 53, 265–282. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries. Energy 2016, 100, 177–189. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.K.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Zhang, Q.; Pandey, B.; Seto, K.C. A Robust Method to Generate a Consistent Time Series From DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Shen, G. Fractal dimension and fractal growth of urbanized areas. Int. J. Geogr. Inf. Sci. 2002, 16, 419–437. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, C. Features and causes of urban spatial growth in Chinese metropolises. Acta. Geol. Sin. 2013, 68, 728–738. [Google Scholar]
- Chen, Y.; Li, X.; Zheng, Y.; Guan, Y.; Liu, X. Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005–2008. Landsc. Urban Plan. 2011, 102, 33–42. [Google Scholar] [CrossRef]
- Smith, R.; Hsiao, C. Analysis of panel data. Economica 1988, 55, 284. [Google Scholar] [CrossRef]
- Seto, K.C.; Kaufmann, R.K. Modeling the drivers of urban land use change in the Pearl River Delta, China: Integrating remote sensing with socioeconomic data. Land Econ. 2003, 79, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Ding, Y.; Niu, Y.; Li, Y.; Luo, G. Economic growth, energy conservation and emissions reduction: A comparative analysis based on panel data for 8 Asian-Pacific countries. Energy Policy 2011, 39, 2121–2131. [Google Scholar] [CrossRef]
- Shi, K.; Wang, H.; Yang, Q.; Wang, L.; Sun, X.; Li, Y. Exploring the relationships between urban forms and fine particulate (PM2.5) concentration in China: A multi-perspective study. J. Clean Prod. 2019, 231, 990–1004. [Google Scholar]
- Fang, C.; Wang, S.; Li, G. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data; Cambridge University Press: New York, NY, USA, 2014; pp. 95–101. [Google Scholar]
- Stock, J.H.; Watson, M.W. Introduction to Econometrics; Palgrave Macmilla: London, UK, 2015; pp. 396–426. [Google Scholar]
- Park, T.; CHOI, S.; Ganguly, S.; Bi, J.; Knyazikhin, Y.; Myneni, R. Remotely sensed northern vegetation response to changing climate: Growing season and productivity perspective. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Paolini, L.; Araoz, E.; Gioia, A.; Ana Powell, P. Vegetation productivity trends in response to urban dynamics. Urban For. Urban Green. 2016, 17, 211–216. [Google Scholar] [CrossRef]
- Guida-Johnson, B.; Faggi, A.M.; Zuleta, G.A. Effects of Urban Sprawl on Riparian Vegetation: Is Compact or Dispersed Urbanization Better for Biodiversity? River Res. Appl. 2017, 33, 959–969. [Google Scholar] [CrossRef]
- Blair, R. The effects of urban sprawl on birds at multiple levels of biological organization. Ecol. Soc. 2004, 9, 3438–3447. [Google Scholar] [CrossRef]
- Forys, E.A.; Allen, C.R. The impacts of sprawl on biodiversity: The ant fauna of the lower Florida Keys. Ecol. Soc. 2005, 10, 585–607. [Google Scholar] [CrossRef] [Green Version]
- Concepción, E.D.; Obrist, M.K.; Moretti, M.; Altermatt, F.; Baur, B.; Nobis, M.P. Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: Not only built-up area matters. Urban Ecosyst. 2016, 19, 225–242. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Effects of income and urban form on urban NO2: Global evidence from satellites. Environ. Sci. Technol. 2011, 45, 4914–4919. [Google Scholar] [CrossRef]
- McCarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Cárdenas Rodríguez, M.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Fan, C.; Tian, L.; Zhou, L.; Hou, D.; Song, Y.; Qiao, X.; Li, J. Examining the impacts of urban form on air pollutant emissions: Evidence from China. J. Environ. Manag. 2018, 212, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Mills, G.; Hayes, F.; Williams, P.; Temmerman, L.; Emberson, L.; Büker, P.; Cinderby, S.; Ashmore, M.; Terry, A.; et al. The International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops Annual Report 2004/05; UN Economic and Social Council: Geneva, Switzerland, 2005. [Google Scholar]
- Cui, S.H.; Yu-Xian, Y.U.; Song, X.D. Review on air pollution induced ecological stress effects on urban vegetation. Ecol. Sci. 2009, 28, 562–567. [Google Scholar]
- Harmens, H.; Mills, G.; Hayes, F. Effects of Air Pollution on Natural Vegetation and Crops; United Nations Economic and Social Council (UNECE): Geneva, Switzerland, 2010. [Google Scholar]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.B.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 81. [Google Scholar]
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Dong, C.; Cao, Y.; Tan, Y. Urban expansion and vegetation changes in Hangzhou Bay area using night-light data. J. Appl. Ecol. 2017, 28, 231–238. [Google Scholar]
- Xu, Z.; Zhang, Z.; Li, C. Exploring urban green spaces in China: Spatial patterns, driving factors and policy implications. Land Use Policy 2019, 89, 104249. [Google Scholar] [CrossRef]
- Du, J.; Wang, K.; Jiang, S.; Cui, B.; Wang, J.; Zhao, C.; Li, J. Urban Dry Island Effect Mitigated Urbanization Effect on Observed Warming in China. J. Clim. 2019, 32, 5705–5723. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A. Urban heat island and urban dry island in Moscow and their centennial changes. J. Appl. Meteorol. Climatol. 2017, 56, 2729–2745. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, R.; Meadows, M.E.; Sengupta, D.; Xu, D. Changing urban green spaces in Shanghai: Trends, drivers and policy implications. Land Use Policy 2019, 87, 104080. [Google Scholar] [CrossRef]
NDVI | PREC | SHUM | TEMP | SRAD | NLI | POPDEN | AREA | FRAC | ||
---|---|---|---|---|---|---|---|---|---|---|
Units | 1 | mm/hr | 10−2kg/kg | K | W/m2 | pc/km2 | km2 | |||
Status (2015) | Mean | 0.29 | 0.14 | 0.90 | 287.94 | 158.83 | 29.20 | 1618.18 | 20.25 | 1.14 |
Std | 0.07 | 0.08 | 0.30 | 5.02 | 19.49 | 13.08 | 1972.62 | 82.59 | 0.04 | |
25% | 0.25 | 0.07 | 0.67 | 285.62 | 144.07 | 18.19 | 428.78 | 2.78 | 1.12 | |
Median | 0.29 | 0.12 | 0.94 | 288.93 | 156.17 | 29.09 | 946.93 | 6.87 | 1.14 | |
75% | 0.33 | 0.21 | 1.10 | 291.04 | 169.63 | 39.72 | 2002.11 | 16.44 | 1.17 | |
Difference (2000–2015) | Mean | 0.00 | 0.03 | 0.03 | 0.62 | 0.50 | 11.20 | 144.36 | 12.03 | 0.01 |
Std | 0.05 | 0.05 | 0.07 | 0.69 | 8.97 | 8.47 | 436.31 | 53.85 | 0.03 | |
25% | −0.03 | 0.00 | −0.01 | 0.19 | −5.58 | 4.88 | −7.47 | 0.91 | −0.01 | |
Median | 0.00 | 0.02 | 0.02 | 0.56 | −0.04 | 10.02 | 45.54 | 3.00 | 0.01 | |
75% | 0.03 | 0.05 | 0.07 | 1.01 | 5.62 | 16.29 | 186.56 | 9.16 | 0.03 |
Coef. | Std. Err. | t | P > |t| | [95% Conf. Interval] | ||
---|---|---|---|---|---|---|
ln(PREC) | 0.043 | 0.005 | 9.040 | 0.000 | 0.034 | 0.052 |
ln(SHUM) | 0.222 | 0.022 | 9.960 | 0.000 | 0.178 | 0.265 |
ln(SRAD) | 0.118 | 0.025 | 4.730 | 0.000 | 0.069 | 0.167 |
ln(TEMP) | 8.178 | 0.642 | 12.740 | 0.000 | 6.920 | 9.437 |
ln(FRAC) | −0.448 | 0.069 | −6.490 | 0.000 | −0.583 | −0.313 |
ln(AREA) | 0.013 | 0.003 | 4.760 | 0.000 | 0.007 | 0.018 |
ln(NLI) | −0.080 | 0.003 | −24.330 | 0.000 | −0.087 | −0.074 |
ln(POPDEN) | −0.026 | 0.015 | −1.790 | 0.074 | −0.056 | 0.003 |
cons | −37.001 | 3.608 | −10.260 | 0.000 | −44.073 | −29.929 |
R2-within | 0.12 | |||||
R2-between | 0.52 | |||||
R2-overall | 0.49 |
(a) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cities in Three Geographical Regions | Cities in Six Geographical Regions | ||||||||||
Eastern | Central | Western | Northeast | North | East | Central-South | Northwest | Southwest | |||
ln(PREC) | 0.0344 *** | 0.0441 *** | 0.0579 *** | 0.0660 *** | 0.0211 | 0.0397 *** | 0.0275 * | 0.0340 ** | 0.0119 | ||
(4.63) | (4.84) | (6.73) | (4.75) | (1.90) | (4.51) | (2.49) | (2.63) | (0.67) | |||
ln(SHUM) | 0.177 *** | 0.215 *** | 0.225 *** | −0.336 *** | 0.311 *** | 0.277 *** | 0.415 *** | 0.224 *** | 0.123 | ||
(4.79) | (4.94) | (5.82) | (−3.95) | (5.14) | (6.40) | (8.26) | (3.40) | (1.95) | |||
ln(SRAD) | 0.140 *** | 0.122 ** | 0.105 * | −0.196 ** | 0.379 *** | 0.150 ** | 0.258 *** | 0.0834 | 0.0560 | ||
(3.68) | (2.61) | (2.14) | (−2.69) | (6.11) | (2.95) | (5.03) | (0.87) | (0.83) | |||
ln(TEMP) | 15.25 *** | 7.113 *** | 3.048 ** | 14.95 *** | 10.93 *** | 11.96 *** | −0.471 | 0.598 | 4.213 * | ||
(12.99) | (6.21) | (2.74) | (10.29) | (7.59) | (7.08) | (−0.30) | (0.33) | (2.19) | |||
ln(FRAC) | −0.564 *** | −0.385 ** | −0.290 * | −0.398 | −0.0168 | −0.842 *** | −0.415 ** | −0.348 | −0.533 * | ||
(−5.64) | (−3.25) | (−2.01) | (−1.66) | (−0.11) | (−7.50) | (−2.77) | (−1.40) | (−2.49) | |||
ln(AREA) | 0.00650 | 0.0355 *** | −0.00262 | 0.00963 | 0.00592 | 0.0155 *** | 0.0253 *** | −0.00700 | 0.00763 | ||
(1.76) | (7.40) | (−0.44) | (0.84) | (0.90) | (3.82) | (4.67) | (−0.63) | (0.90) | |||
ln(NLI) | −0.0966 *** | −0.0852 *** | −0.0578 *** | −0.0243 | −0.0471 *** | −0.110 *** | −0.0654 *** | −0.0422 *** | −0.0887 *** | ||
(−17.59) | (−14.51) | (−9.56) | (−1.57) | (−6.08) | (−19.41) | (−8.13) | (−4.12) | (−9.55) | |||
ln(POPDEN) | −0.0841 *** | 0.130 *** | 0.0427 | −0.0379 | 0.208 *** | −0.142 *** | 0.0323 | 0.313 *** | −0.373 *** | ||
(−4.23) | (3.74) | (1.42) | (−0.53) | (6.24) | (−5.43) | (1.10) | (6.33) | (−7.83) | |||
Cons. | −76.86 *** | −32.12 *** | −8.476 | −76.64 *** | −55.31 *** | −57.26 *** | 11.60 | 3.567 | −12.31 | ||
(−11.65) | (−5.00) | (−1.36) | (−9.66) | (−6.84) | (−5.98) | (1.30) | (0.36) | (−1.14) | |||
N | 4278 | 3279 | 3204 | 928 | 1473 | 3551 | 2323 | 1113 | 1394 | ||
R2 (within) | 0.213 | 0.155 | 0.076 | 0.284 | 0.218 | 0.248 | 0.161 | 0.084 | 0.151 | ||
R2 (between) | 0.324 | 0.306 | 0.617 | 0.171 | 0.321 | 0.100 | 0.001 | 0.157 | 0.054 | ||
R2 (overall) | 0.311 | 0.295 | 0.574 | 0.163 | 0.289 | 0.107 | 0.003 | 0.140 | 0.083 | ||
rho | 0.890 | 0.907 | 0.807 | 0.791 | 0.969 | 0.862 | 0.823 | 0.969 | 0.962 | ||
(b) | |||||||||||
Altitudes | |||||||||||
Low | Medium-Low | Medium | High | Ultra-High | |||||||
ln(PREC) | 0.0390 *** | 0.0183 | 0.0435 *** | 0.0856 *** | 0.0668 | ||||||
(7.04) | (1.06) | (3.52) | (3.82) | (1.03) | |||||||
ln(SHUM) | 0.244 *** | −0.105 | 0.135 * | 0.148 | −0.0214 | ||||||
(9.31) | (−1.38) | (2.09) | (1.66) | (−0.09) | |||||||
ln(SRAD) | 0.128 *** | 0.0653 | 0.250 * | −0.498 *** | −1.009 | ||||||
(4.58) | (0.91) | (2.36) | (−3.96) | (−1.12) | |||||||
ln(TEMP) | 10.79 *** | 5.547 ** | −2.585 | −3.369 | 10.12 | ||||||
(14.45) | (2.96) | (−1.24) | (−1.21) | (0.90) | |||||||
ln(FRAC) | −0.679 *** | 0.110 | 0.146 | 0.258 | −0.194 | ||||||
(−8.66) | (0.49) | (0.66) | (0.82) | (−0.21) | |||||||
ln(AREA) | 0.0161 *** | 0.0242 * | −0.00476 | −0.0323 * | −0.0470 | ||||||
(5.55) | (2.48) | (−0.52) | (−2.52) | (−1.34) | |||||||
ln(NLI) | −0.0937 *** | −0.0285 ** | −0.0531 *** | −0.0618 *** | −0.000338 | ||||||
(−24.28) | (−2.76) | (−5.23) | (−4.85) | (−0.01) | |||||||
ln(POPDEN) | −0.0529 ** | 0.247 *** | 0.158 ** | 0.156 * | −0.644 * | ||||||
(−3.26) | (4.37) | (3.03) | (2.25) | (−2.37) | |||||||
Cons. | −51.42 *** | −25.77 * | 21.29 | 29.99 | −41.18 | ||||||
(−12.23) | (−2.44) | (1.83) | (1.94) | (−0.66) | |||||||
N | 8177 | 1069 | 967 | 641 | 61 | ||||||
R2 (within) | 0.182 | 0.086 | 0.068 | 0.163 | 0.653 | ||||||
R2 (between) | 0.409 | 0.030 | 0.114 | 0.189 | 0.105 | ||||||
R2 (overall) | 0.382 | 0.032 | 0.113 | 0.180 | 0.155 | ||||||
rho | 0.854 | 0.956 | 0.937 | 0.936 | 0.989 |
Area Size | Urban Agglomeration | ||||||||
---|---|---|---|---|---|---|---|---|---|
Small | Medium | Large | BTH | YRD | PRD | MYR | CC | Non | |
ln(PREC) | 0.0458 *** | 0.0540 * | 0.0645 | 0.0186 | 0.0260 | −0.0438 | −0.00835 | 0.0161 | 0.126 *** |
(9.27) | (2.20) | (0.71) | (1.21) | (1.79) | (−1.07) | (−0.52) | (0.44) | (8.23) | |
ln(SHUM) | 0.214 *** | 0.221 | 1.003 | −0.00280 | 0.601 *** | 0.427 | 0.526 *** | 0.186 | −0.0465 |
(9.30) | (1.71) | (1.01) | (−0.03) | (8.79) | (1.92) | (7.26) | (1.29) | (−0.69) | |
ln(SRAD) | 0.113 *** | 0.0774 | 0.578 | 0.392 *** | 0.355 *** | 0.757 *** | 0.376 *** | −0.0660 | 0.192 * |
(4.40) | (0.63) | (0.93) | (4.73) | (4.57) | (4.64) | (3.35) | (−0.56) | (1.99) | |
ln(TEMP) | 7.924 *** | 7.665 * | −4.458 | 11.05 *** | 27.39 *** | 1.313 | −5.260 | 11.74 ** | −3.139 |
(11.97) | (2.07) | (−0.26) | (5.11) | (7.90) | (0.18) | (−1.77) | (2.82) | (−1.41) | |
ln(FRAC) | −0.489 *** | −0.0495 | 0.258 | −0.384 | −0.738 *** | −0.836 | −1.164 *** | −0.310 | −0.185 |
(−6.85) | (−0.10) | (0.12) | (−1.84) | (−4.43) | (−1.72) | (−5.32) | (−0.71) | (−0.92) | |
ln(AREA) | 0.0122 *** | 0.0911 *** | 0.0168 | 0.00233 | −0.00178 | −0.00735 | 0.0359 *** | 0.0263 | 0.00999 |
(4.43) | (4.27) | (0.16) | (0.23) | (−0.30) | (−0.52) | (4.89) | (1.45) | (1.28) | |
ln(NLI) | −0.0780 *** | −0.344 *** | −0.471 | −0.0593 *** | −0.113 *** | −0.0382 | −0.127 *** | −0.119 *** | −0.0711 *** |
(−23.36) | (−7.82) | (−1.72) | (−4.33) | (−14.44) | (−1.27) | (−12.16) | (−6.54) | (−6.36) | |
ln(POPDEN) | −0.0338 * | −0.0325 | 0.149 | 0.124 ** | −0.0417 | 0.104 | 0.123 * | −0.256 ** | −0.0810 |
(−2.18) | (−0.43) | (0.89) | (3.02) | (−1.24) | (1.83) | (2.26) | (−3.03) | (−1.76) | |
Cons. | −35.53 *** | −32.03 | 37.61 | −56.99 *** | −144.9 *** | −1.848 | 38.50 * | −54.54 * | 25.75 * |
(−9.54) | (−1.55) | (0.39) | (−4.70) | (−7.39) | (−0.05) | (2.31) | (−2.27) | (2.08) | |
N | 10441 | 420 | 54 | 696 | 1491 | 286 | 1032 | 458 | 1162 |
R2 (within) | 0.12 | 0.38 | 0.49 | 0.23 | 0.35 | 0.36 | 0.26 | 0.24 | 0.12 |
R2 (between) | 0.51 | 0.37 | 0.30 | 0.18 | 0.04 | 0.11 | 0.13 | 0.11 | 0.00 |
R2 (overall) | 0.49 | 0.39 | 0.26 | 0.17 | 0.09 | 0.03 | 0.06 | 0.10 | 0.00 |
rho | 0.81 | 0.87 | 0.82 | 0.85 | 0.79 | 0.88 | 0.89 | 0.85 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Wang, Y.; Sun, F.; Jiang, H.; Huang, J.; Shen, J.; Wei, F.; Li, S. Exploring the Combined Effect of Urbanization and Climate Variability on Urban Vegetation: A Multi-Perspective Study Based on More than 3000 Cities in China. Remote Sens. 2020, 12, 1328. https://doi.org/10.3390/rs12081328
Liang Z, Wang Y, Sun F, Jiang H, Huang J, Shen J, Wei F, Li S. Exploring the Combined Effect of Urbanization and Climate Variability on Urban Vegetation: A Multi-Perspective Study Based on More than 3000 Cities in China. Remote Sensing. 2020; 12(8):1328. https://doi.org/10.3390/rs12081328
Chicago/Turabian StyleLiang, Ze, Yueyao Wang, Fuyue Sun, Hong Jiang, Jiao Huang, Jiashu Shen, Feili Wei, and Shuangcheng Li. 2020. "Exploring the Combined Effect of Urbanization and Climate Variability on Urban Vegetation: A Multi-Perspective Study Based on More than 3000 Cities in China" Remote Sensing 12, no. 8: 1328. https://doi.org/10.3390/rs12081328
APA StyleLiang, Z., Wang, Y., Sun, F., Jiang, H., Huang, J., Shen, J., Wei, F., & Li, S. (2020). Exploring the Combined Effect of Urbanization and Climate Variability on Urban Vegetation: A Multi-Perspective Study Based on More than 3000 Cities in China. Remote Sensing, 12(8), 1328. https://doi.org/10.3390/rs12081328