The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space
Abstract
:1. Introduction
1.1. Passive Microwave Remote Sensing Frequencies
1.2. Remote Sensing of Sea Surface Salinity
2. Methods
3. Results
3.1. Sensitivity of Brightness Temperature (TB) to Changes in Salinity: dTB/dSSS
3.1.1. Background
3.1.2. Dependence of Sensitivity, dTB/dSSS, on Temperature
3.1.3. Dependence of dTB/dSSS on Salinity
3.2. Sensitivity of TB to Changes in Temperature: dTB/dSST
3.3. Sensitivity of TB to Wind Speed (WS): dTB/dWS
3.3.1. Background
3.3.2. Dependence of TB on WS
3.3.3. Sensitivity of TB to Changes in WS: dTB/dWS
3.3.4. Frequency Dependence of Sensitivity: dTB/dWS
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Model Functions for the Dielectric Constant of Sea Water
Appendix B. Dependence on Salinity
Appendix B.1. dTB/dSST
Appendix B.2. dTB/dSSS
Appendix C. Atmospheric Attenuation
Appendix D. Spectrum Management
Frequency GHz | Bandwidth MHz | Threshold | Not to Exceed % Time | Protection | |
---|---|---|---|---|---|
Power(dBW) | ΔTB(K) | ||||
1.4–1.427 | 27 | −174 | 0.05 | 0.1 | Protected |
6.425–7.25 | 200 | −166 | 0.05 | 0.1 | None |
10.68–0.70 | 100 | −166 | 0.10 | 0.1 | Protected |
18.60–18.80 | 200 | −163 | 0.10 | 0.1 | Shared |
23.60–24.00 | 200 | −166 | 0.05 | 0.01 | Protected |
36.00–37.00 | 100 | −166 | 0.10 | 0.1 | Shared |
52.60–59.30 | 100 | −169 | 0.05 | 0.01 | Protected |
References
- Le Vine, D.M.; Johnson, J.T.; Piepmeier, J. RFI and Remote Sensing of the Earth from Space. In Proceedings of the Radio Frequency Interference (RFI) 2016 Conference, Socorro, NM, USA, 17–20 October 2016. [Google Scholar]
- Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E. Aquarius and Remote Sensing of Sea Surface Salinity from Space. Proc. IEEE 2010, 98, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Brown, S. A Next Generation Spaceborne Ocean State Observatory: Surface Salinity, Temperature and Ocean Winds from Equator to Pole. In Proceedings of the Global Ocean Salinity and the Water Cycle Workshop, Woods Hole, MA, USA, 22–26 May 2017. [Google Scholar]
- Bruckner, L.; de Amici, G.; Le Vine, D.M.; Piepmeier, J. A Multi–Band Passive Radiometer for Sea Salinity, Soil Moisture and Cryosphere Studies. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8909–8912. [Google Scholar]
- Dinnat, E.; de Amici, G.; Le Vine, D.; Piepmeier, J. Next generation spaceborne instrument for monitoring ocean salinity with application to the coastal zone and cryosphere. In Proceedings of the 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Cambridge, MA, USA, 27–30 March 2018. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Le Vine, D.M.; Lagerloef, G.S.E.; Colomb, F.R.; Yueh, S.H.; Pellerano, F.A. Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2040–2050. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Le Vine, D.M.; Boutin, J.; Meissner, T.; Lagerloef, G. Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters. Remote Sens. 2019, 11, 750. [Google Scholar] [CrossRef] [Green Version]
- Le Vine, D.M.; Dinnat, E.P.; Meissner, T.; Wentz, F.J.; Kao, H.-Y.; Lagerloef, G.; Lee, T. Status of Aquarius and Salinity Continuity. Remote Sens. 2018, 10, 1585. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.; Lagerloef, G.; Lee, T.; Melnichenko, O.; Meissner, T.; Hacker, P. Assessment of Aquarius Sea Surface Salinity. Remote Sens. 2018, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes. Remote Sens. 2018, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Garcia–Eidell, C.; Comiso, J.C.; Dinnat, E.; Brucker, L. Satellite observed salinity distributions at high latitudes in the Northern Hemisphere: A comparison of four products. J. Geophys. Res. Oceans 2017, 122, 7717–7736. [Google Scholar] [CrossRef] [Green Version]
- Garcia–Eidell, C.; Comiso, J.C.; Dinnat, E.; Brucker, L. Sea surface salinity distribution in the Southern Ocean as observed from space. J. Geophys. Res. Oceans 2018. [CrossRef]
- Rahmstorf, S. Thermohaline Ocean Circulation. Available online: https://courses.seas.harvard.edu/climate/eli/Courses/EPS281r/Sources/Thermohaline–circulation/1–Rahmstorf_EQS_2006.pdf (accessed on 23 April 2020).
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space–based Observations for Understanding Changes in the Arctic–Boreal Zone. Rev. Geophys. 2019, 58, e2019RG000652. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.; Le Vine, D.M. The salinity retrieval algorithms for NASA Aquarius version 5 and SMAP Version 3 releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Wilheit, T.T. A model for the microwave emissivity of the ocean’s surface as a function of wind speed. IEEE Trans. Geosci. Electron. 1979, 17, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.; Swift, C. An improved model for the dielectric constant of seawater at microwave frequencies. IEEE Trans. Antennas Propag. 1977, 25, 104–111. [Google Scholar] [CrossRef]
- Peake, W. Interaction of electromagnetic waves with some natural surfaces. IRE Trans. Antennas Propag. 1959, 7, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1836–1849. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incident angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026. [Google Scholar] [CrossRef]
- Zhou, Y.; Lang, R.H.; Dinnat, E.P.; Le Vine, D.M. L–Band Model Function of the Dielectric Constant of Sea Water. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6964–6974. [Google Scholar] [CrossRef]
- Lang, R.; Zhou, Y.; Utku, C.; Le Vine, D.M. Accurate measurements of the dielectric constant of seawater at L band. Radio Sci. 2016, 51, 2–24. [Google Scholar] [CrossRef] [Green Version]
- Roemmich, D. On the design and Implementation of Argo–An initial Plan for a Global Array of Profiling Floats. Available online: http://www.argo.ucsd.edu/argo–design.pdf (accessed on 23 April 2020).
- Hollinger, J.P. Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Electron. 1971, 9, 165–169. [Google Scholar] [CrossRef]
- Camps, A.; Font, J.; Vall–llossera, M.; Gabarró, C.; Corbella, I.; Duffo, N.; Torres, F.; Blanch, S.; Aguasca, A.; Villarino, R.; et al. The WISE 2000 and 2001 campaigns in support of the SMOS mission: Sea surface L–band brightness temperature observations and their application to multiangular salinity retrieval. IEEE Trans. Geosci. Remote Sens. 2004, 42, 804–824. [Google Scholar] [CrossRef]
- Yueh, S.H.; Dinardo, S.J.; Fore, A.G.; Li, F.K. Passive and active L–band microwave observations and modeling of ocean surface winds. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3087–3100. [Google Scholar] [CrossRef]
- Yin, X.; Boutin, J.; Dinnat, E.; Song, Q.; Martin, A. Roughness and foam signature on SMOS–MIRAS brightness temperatures: A semi–theoretical approach. Remote Sens. Environ. 2016, 180, 221–233. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Burgin, M.; Colliander, S.; Chae, C.; Cosh, M.; Gao, Y. Intercalibration of Low Frequency Brightness Temperature Measurements for Long–Term Soil Moisture Record. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 88–91. [Google Scholar]
- Yueh, S.H.; Tang, W.; Fore, A.G.; Neumann, G.; Hayashi, A.; Freedman, A.; Chaubell, J.; Lagerloef, G.S.E. L–Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4619. [Google Scholar] [CrossRef]
- Durden, S.L.; Vesecky, J.F. A physical radar cross–section model for a wind–driven sea with swell. IEEE J. Ocean. Eng. 1985, 10, 445–451. [Google Scholar] [CrossRef]
- Stogryn, A. Equations for calculating the dielectric constant of saline water. IEEE Trans. Microw. Theory Tech. 1971, 19, 733–736. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.; Ricciardulli, L. The emission and scattering of L–band microwave radiation from rough ocean surfaces and wind speed measurements from Aquarius. J. Geophys. Res. Oceans 2014, 119. [Google Scholar] [CrossRef]
- Zhou, Y.; Lang, R.H.; Dinnat, E.P.; Le Vine, D.M. L–Band Seawater Debye Model Development and Its Application to Salinity Retrieval from Aquarius Satellite Data. In preparation.
- Zhou, Y.; Lang, R.H.; Dinnat, E.P.; Le Vine, D.M. L–Band Seawater Dielectric Constant Model Function Based on Improved Measurement Data Set. In Proceedings of the International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Liebe, H.J. An updated model for millimeter wave propagation in moist air. Radio Sci. 1985, 20, 1069–1089. [Google Scholar] [CrossRef] [Green Version]
- Liebe, H.J.; Rosenkranz, P.W.; Hufford, G.A. Atmospheric 60–GHz Oxygen Spectrum: New Laboratory Measurements and Line Parameters. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 629–643. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Water Vapor Microwave Continuum Absorption: A Comparison of Measurements and Models. Radio Sci. 1998, 33, 919–928. [Google Scholar] [CrossRef]
- National Academies of Science, Engineering and Medicine. Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses, 2nd ed.; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Le Vine, D.M.; de Matthaeis, P. Aquarius Active/Passive RFI Environment at L–Band. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1747–1751. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Vine, D.M.; Dinnat, E.P. The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space. Remote Sens. 2020, 12, 1381. https://doi.org/10.3390/rs12091381
Le Vine DM, Dinnat EP. The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space. Remote Sensing. 2020; 12(9):1381. https://doi.org/10.3390/rs12091381
Chicago/Turabian StyleLe Vine, David M., and Emmanuel P. Dinnat. 2020. "The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space" Remote Sensing 12, no. 9: 1381. https://doi.org/10.3390/rs12091381
APA StyleLe Vine, D. M., & Dinnat, E. P. (2020). The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space. Remote Sensing, 12(9), 1381. https://doi.org/10.3390/rs12091381