Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods to Study Sustainable Development Goal (SDG) 6 Indicator on Water Stress
2.2.1. Hydrological Datasets
2.2.2. Multi-Assessment Methodologies of Water Stress Addressing SDG 6
2.3. Data and Methods to Study SDG 11 Indicator on Urbanization Process
2.3.1. Land-Cover Datasets
2.3.2. Modeling of Impervious Surfaces Addressing SDG 11
3. Results
3.1. Comparision of Changing Trends among Multiple Hydrological Parameters
3.2. The Relationship between the Groundwater Variablity and Multiple Hydrological Parameters
3.3. The Change Detection of Impervious Surface among Multiple Selected Cities between 2013 and 2019
4. Discussion
4.1. Discussion of the Results of the SDG 6 Study
4.2. Discussion of the Results of the SDG 11 Study
- It uses both optical and radar imagery for the model development. WSF-2015 processed multitemporal Sentinel-1 (~107,000 scenes) radar and Landsat-8 (~217,000 scenes) optical imagery, and has been validated against 900,000 samples labelled by crowdsourcing photointerpretation of high-resolution Google Earth imagery.
- It improves feature extraction with multiple indices. In WSF-2015, multiple spectral indices were extracted from Landsat-8 imagery in the feature stack, including The Normalized Difference Built-Up Index (NDBI) [52], Normalized Difference Middle Infrared index (NDMIR) [53] and the Normalized Difference Vegetation Index (NDVI) [54], Modified Normalized Difference Water Index (MNDWI) [55], Normalized Difference Red Blue (NDRB) [56] and Normalized Difference Green Blue (NDGB) [56]. WSF-2015 used six computed temporal statistics, including maximum, minimum, mean, standard deviation, mean slope (i.e., the average absolute difference between consecutive items of the temporal series), as well as coefficient of variation (COV) and number of scenes, for the feature extraction from Sentinel-1 and Landsat-8 indices.
- It optimizes training sample selection criteria. WSF-2105 improved training sample selection process with a criteria took into account of the well-established Köppen Geiger scheme [57] for Landsat-8 imagery, as well as a knowledge-based criteria for Sentinel-1 of both ascending and descending scenes. It also masked bare rocks with higher slopes using digital elevation models (DEM) from the Shuttle Radar Topography Mission (SRTM) [58] and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [59].
- It adds post-processing for the classification results. WSF-2015 used different global and regional reference datasets for reference in the post-classification phrase. Then the final classification map was generated from the merger of both Landset-8 and Sentinel-1 based classification maps that have been processed with object-based segmentation approaches.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Lu, P.; Liu, D.; Jin, P.; Wang, W. Pinpointing the sources and measuring the lengths of the principal rivers of the world. Int. J. Digit. Earth 2009, 2, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Elsanabary, M.H.M.M. Teleconnection, Modeling, Climate Anomalies Impact and Forecasting of Rainfall and Streamflow of the Upper Blue Nile River Basin. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2012. [Google Scholar] [CrossRef]
- Bakenaz, A. Zeidan Water Conflicts in the Nile River Basin: Impacts on Egypt Water Resources Management and Road Map. 2015. [Google Scholar] [CrossRef]
- Investopedia How Does Industrialization Lead to Urbanization? Available online: https://www.investopedia.com/ask/answers/041515/how-does-industrialization-lead-urbanization.asp (accessed on 31 March 2020).
- Refugees and Asylum-Seekers from South Sudan. Refugee Situations. Available online: http://data.unhcr.org/SouthSudan/regional.php (accessed on 6 October 2019).
- Eltayeb, G.E. Understanding slums: The case of Khartoum, Sudan; UN-HABITAT Case Studies: London, UK, 2003; pp. 1–20. [Google Scholar]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; In Proceedings of the 4th Plenary Meeting, New York, NY, USA. 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 26 January 2019).
- United Nations General Assembly. Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development. A/RES/71/313; Seventy-first Session, NY, USA. 2017. Available online: https://undocs.org/A/RES/71/313 (accessed on 26 January 2019).
- United Nations. The Sustainable Development Goals Report 2019. Available online: https://unstats.un.org/sdgs/report/2019 (accessed on 26 October 2019).
- Chinese Academy of Sciences. Big Earth Data in Support of the Sustainable Development Goals. Available online: http://www.xinhuanet.com/english/download/BigEarthDataSupportSDGs.pdf (accessed on 26 September 2019).
- Technology Facilitation Mechanism. Available online: https://sustainabledevelopment.un.org/tfm (accessed on 6 October 2019).
- Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Rosa, W. (Ed.) Springer Publishing Company: New York, NY, USA, 2017; ISBN 978-0-8261-9011-6. [Google Scholar]
- Group on Earth Observations. Earth Observations in Support of the 2030 Agenda for Sustainable Development; Japan Aerospace Exploration Agency: Tokyo, Japan, 2017. [Google Scholar]
- Li, W.; El-Askary, H.; Qurban, M.A.; Li, J.; ManiKandan, K.P.; Piechota, T. Using multi-indices approach to quantify mangrove changes over the Western Arabian Gulf along Saudi Arabia coast. Ecol. Indic. 2019, 102, 734–745. [Google Scholar] [CrossRef]
- Li, W.; El-Askary, H.; Qurban, M.; Proestakis, E.; Garay, M.; Kalashnikova, O.; Amiridis, V.; Gkikas, A.; Marinou, E.; Piechota, T.; et al. An Assessment of Atmospheric and Meteorological Factors Regulating Red Sea Phytoplankton Growth. Remote Sens. 2018, 10, 673. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; El-Askary, H.; ManiKandan, K.; Qurban, M.; Garay, M.; Kalashnikova, O. Synergistic Use of Remote Sensing and Modeling to Assess an Anomalously High Chlorophyll-a Event during Summer 2015 in the South Central Red Sea. Remote Sens. 2017, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-R.; Prasad, A.K.; El-Askary, H.; Lee, W.-K.; Kwak, D.-A.; Lee, S.-H.; Kafatos, M. Application of the Savitzky-Golay Filter to Land Cover Classification Using Temporal MODIS Vegetation Indices. Photogramm. Eng. Remote Sens. 2014, 80, 675–685. [Google Scholar] [CrossRef]
- Le, J.A.; El-Askary, H.M.; Allali, M.; Struppa, D.C. Application of recurrent neural networks for drought projections in California. Atmos. Res. 2017, 188, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- El-Askary, H.M.; Li, W.; El-Nadry, M.; Awad, M.; Mostafa, A.R. Strong Interactions Indicated Between Dust Aerosols and Precipitation Related Clouds in the Nile Delta. In Advances in Remote Sensing and Geo Informatics Applications; El-Askary, H.M., Lee, S., Heggy, E., Pradhan, B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–6. ISBN 978-3-030-01439-1. [Google Scholar]
- El-Nadry, M.; Li, W.; El-Askary, H.; Awad, M.A.; Mostafa, A.R. Urban Health Related Air Quality Indicators over the Middle East and North Africa Countries Using Multiple Satellites and AERONET Data. Remote Sens. 2019, 11, 2096. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ali, E.; Abou El-Magd, I.; Mourad, M.M.; El-Askary, H. Studying the Impact on Urban Health over the Greater Delta Region in Egypt Due to Aerosol Variability Using Optical Characteristics from Satellite Observations and Ground-Based AERONET Measurements. Remote Sens. 2019, 11, 1998. [Google Scholar] [CrossRef] [Green Version]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for Drought Assessment Using Global Soil Moisture Data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; El-Askary, H.M.; Qurban, M.; Allali, M.; Manikandan, K.P. On the Drying Trends Over the MENA Countries Using Harmonic Analysis of the Enhanced Vegetation Index. In Advances in Remote Sensing and Geo Informatics Applications; El-Askary, H.M., Lee, S., Heggy, E., Pradhan, B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 243–245. ISBN 978-3-030-01439-1. [Google Scholar]
- AQUASTAT Database. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en (accessed on 8 April 2020).
- Bolten, J.D.; Crow, W.T. Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture: Improved prediction of vegetation. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Anderson, M.C.; Hain, C.R.; Johnson, D.M.; Mueller, R. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1328–1343. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Levine, D. Foreword to the Special Issue on the Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Trans. Geosci. Remote Sens. 2008, 46, 583–585. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- NASA GSFC Hydrological Sciences Laboratory (HSL). FLDAS Noah Land Surface Model L4 Global Monthly 0.1 × 0.1 degree (MERRA-2 and CHIRPS). 2018. Available online: https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary (accessed on 1 February 2020).
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates: Accuracy of GRACE-TWS. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Swenson, S.C. GRACE Monthly Land Water Mass Grids NETCDF RELEASE 5.0. Ver. 5.0; PO.DAAC: Pasadena, CA, USA, 2012. [Google Scholar]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Lakshmi, V.; Fayne, J.; Bolten, J. A comparative study of available water in the major river basins of the world. J. Hydrol. 2018, 567, 510–532. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Landsat-8 image courtesy of the U.S. Geological Survey. Available online: https://www.usgs.gov/centers/eros/data-citation?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 19 February 2020).
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3431–3440. [Google Scholar]
- Herrera-Pantoja, M.; Hiscock, K.M. The effects of climate change on potential groundwater recharge in Great Britain. Hydrol. Process. 2008, 22, 73–86. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Senay, G.B.; Velpuri, N.M.; Bohms, S.; Demissie, Y.; Gebremichael, M. Understanding the hydrologic sources and sinks in the Nile Basin using multisource climate and remote sensing data sets. Water Resour. Res. 2014, 50, 8625–8650. [Google Scholar] [CrossRef]
- Mahmoud, M.A. Groundwater and Agriculture in the Nile Delta. In Groundwater in the Nile Delta; Negm, A.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 73, pp. 141–157. ISBN 978-3-319-94282-7. [Google Scholar]
- U.S NEWS. 8 Cities with the World’s Largest Slums. Available online: https://www.usnews.com/news/cities/articles/2019-09-04/the-worlds-largest-slums (accessed on 26 October 2019).
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Pesaresi, M.; Kemper, T.; Politis, P.; Florczyk, A.J.; Syrris, V.; Melchiorri, M.; Sabo, F.; Soille, P. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 2019, 3, 140–169. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining where humans live—The World Settlement Footprint 2015. arXiv 2019, arXiv:1910.12707. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecol. Manag. 2004, 198, 149–167. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, G.; Wang, S.; Wang, L.; Wang, F.; Liu, X. A new index for mapping built-up and bare land areas from Landsat-8 OLI data. Remote Sensing Lett. 2014, 5, 862–871. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.; Bailey, B.; Tsu, H.; Hato, M. The ASTER Global DEM. Photogramm. Eng. Remote Sens. 2010, 76, 344–348. [Google Scholar]
Country | Capital City | Calculated Area (km2) | Percentage |
---|---|---|---|
Egypt | Cairo | 232,522.1 | 8.98% |
Sudan | Khartoum | 878,440.2 | 33.92% |
South Sudan | Juda | 638,825.2 | 24.67% |
Ethiopia | Addis Ababa | 360,680.9 | 13.93% |
Uganda | Kampala | 239,450.5 | 9.25% |
Kenya | Nairobi | 112,661.4 | 4.35% |
Tanzania | Dodoma | 72,724.7 | 2.81% |
Nile watershed | N/A | 2,589,724.4 | 97.91% |
Egypt | Ethiopia | Kenya | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2007 | 2012 | 2017 | 2007 | 2012 | 2017 | 2007 | 2012 | 2017 | |||
SWP | 0.5 | 0.5 | 0.5 | 120 | 120 | 120 | 20.2 | 20.2 | 20.2 | ||
GWR | 0.5 | 0.5 | 0.5 | 20 | 20 | 20 | 3.5 | 3.5 | 3.5 | ||
QOUT-QIN | 0 | 0 | 0 | 18 | 18 | 18 | 3 | 3 | 3 | ||
IRWR | 1 | 1 | 1 | 122 | 122 | 122 | 20.7 | 20.7 | 20.7 | ||
TRESW | 55.5 | 55.5 | 55.5 | 0 | 0 | 0 | 10 | 10 | 10 | ||
GWIN | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
ERWR | 56.5 | 56.5 | 56.5 | 0 | 0 | 0 | 10 | 10 | 10 | ||
TRSW | 56 | 56 | 56 | 120 | 120 | 120 | 30.2 | 30.2 | 30.2 | ||
TRGW | 1.5 | 1.5 | 1.5 | 20 | 20 | 20 | 3.5 | 3.5 | 3.5 | ||
TRWR | 57.5 | 57.5 | 57.5 | 122 | 122 | 122 | 30.7 | 30.7 | 30.7 | ||
EFR | 2.6 | 2.6 | 2.6 | 89.3 | 89.3 | 89.3 | 18.57 | 18.57 | 18.57 | ||
FSWW | – | NA | NA | – | – | – | – | – | 3.507(2016) | ||
FGWW | – | 7.5 | 6.5 | – | – | – | – | – | 0.525(2016) | ||
TFWW | – | 68.1 | 64.4 | 7.861(2005) | – | 10.55(2016) | 2.32(2003) | 3.218(2010) | 4.032(2016) | ||
WS | – | 124 | 117.3 | 24.04(2005) | – | 32.26(2016) | 19.13(2003) | 26.53(2010) | 33.24(2016) | ||
South Sudan | Sudan | Uganda | Tanzania | ||||||||
2012 | 2017 | 2012 | 2017 | 2007 | 2012 | 2017 | 2007 | 2012 | 2017 | ||
SWP | 26 | 26 | 2 | 2 | 39 | 39 | 39 | 80 | 80 | 80 | |
GWR | 4 | 4 | 3 | 3 | 29 | 29 | 29 | 30 | 30 | 30 | |
QOUT-QIN | 4 | 4 | 1 | 1 | 29 | 29 | 29 | 26 | 26 | 26 | |
IRWR | 26 | 26 | 4 | 4 | 39 | 39 | 39 | 84 | 84 | 84 | |
TRESW | 23.5 | 23.5 | 33.8 | 33.8 | 21.1 | 21.1 | 21.1 | 12.27 | 12.27 | 12.27 | |
GWIN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
ERWR | 23.5 | 23.5 | 33.8 | 33.8 | 21.1 | 21.1 | 21.1 | 12.27 | 12.27 | 12.27 | |
TRSW | 49.5 | 49.5 | 35.8 | 35.8 | 60.1 | 60.1 | 60.1 | 92.27 | 92.27 | 92.27 | |
TRGW | 4 | 4 | 3 | 3 | 29 | 29 | 29 | 30 | 30 | 30 | |
TRWR | 49.5 | 49.5 | 37.8 | 37.8 | 60.1 | 60.1 | 60.1 | 96.27 | 96.27 | 96.27 | |
EFR | 33.93 | 33.93 | 15.1 | 15.1 | 49.17 | 49.17 | 49.17 | 56.28 | 56.28 | 56.28 | |
FSWW | – | – | – | – | – | – | – | – | – | – | |
FGWW | – | – | – | – | – | – | – | – | – | – | |
TFWW | 0.658(2011) | – | 26.93(2011) | – | – | 0.637(2008) | – | – | – | – | |
WS | 4.226(2011) | – | 118.6(2011) | – | – | 5.828(2008) | – | – | – | – |
City | 2013 | 2019 | Δ |
---|---|---|---|
Cairo | 14.4% | 12.3% | −2.1% |
Khartoum | 10.6% | 23.7% | 13.1% |
Juda | 12.2% | 11.4% | −0.8% |
Addis Ababa | 39.1% | 44.5% | 5.4% |
Kampala | 14.9% | 25.4% | 10.5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; El-Askary, H.; Lakshmi, V.; Piechota, T.; Struppa, D. Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries. Remote Sens. 2020, 12, 1391. https://doi.org/10.3390/rs12091391
Li W, El-Askary H, Lakshmi V, Piechota T, Struppa D. Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries. Remote Sensing. 2020; 12(9):1391. https://doi.org/10.3390/rs12091391
Chicago/Turabian StyleLi, Wenzhao, Hesham El-Askary, Venkat Lakshmi, Thomas Piechota, and Daniele Struppa. 2020. "Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries" Remote Sensing 12, no. 9: 1391. https://doi.org/10.3390/rs12091391
APA StyleLi, W., El-Askary, H., Lakshmi, V., Piechota, T., & Struppa, D. (2020). Earth Observation and Cloud Computing in Support of Two Sustainable Development Goals for the River Nile Watershed Countries. Remote Sensing, 12(9), 1391. https://doi.org/10.3390/rs12091391