Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery
Abstract
:1. Introduction
Target Parameter | Location | Satellite Data | Most Predictive Indices for Target Parameter | Reference |
---|---|---|---|---|
Crop Residue | Canada | EO-1 Hyperion | SWIR (shortwave infrared) spectral bands | Bannari et al., 2015 [20] |
Crop Residue, Cover Crop | Pennsylvania, USA | Landsat + SPOT | NDTI (Normalized Difference Tillage Index) mean NDVI, GDD (“Growing Degree Days”) | Hively et al., 2015 [11] |
Crop Residue, Tillage Practices | Ohio, USA | Landast + EO-1 Hyperion | CAI (cellulose absorption index) | Sonmez and Slater 2016 [21] |
Crop Residue | Maryland, USA | Landsat + WorldView-3 SWIR | SINDRI (Shortwave Infrared Normalized Difference Residue Index), LCA (Lignin Cellulose Absorption) | Hively et al., 2018 [23] |
Crop Residue | Maryland, USA | Worldview-3 | Moisture corrected SINDRI | Quemada et al., 2018 [25] |
Cover Crop | Marland, USA | 16-band CROPSCAN Imagery | NDVI, TVI (Triangular vegetation index), GDD | Prabhakara et al., 2015 [10] |
Cover Crop | Kansas, USA & Ukrain | MODIS | GDD, maximum NDVI | Skakun et al., 2017 [14] |
Cover crop | Midwestern USA | Landsat + MODIS | Elapsed Days, maximum NDVI | Seifert et al., 2018 [24] |
Cover Crop | Maryland, USA | Landsat | GDD | Hively et al., 2020 [26] |
Cover Crop | Maryland, USA | Landsat + Sentinel-2 | Maximum seasonal NDVI | Thieme et al., 2020 [12] |
Cover Crop | Corn Belt regions, USA | Landsat, Sentinel, MODIS | NDVI (timing and intensity) | Hagen et al., 2020 [19] |
Cover Crop | Eastern Netherlands | Sentinel-2 | GDD, NDVI (timing and intensity) | Fan et al., 2020 [27] |
Cover Crop (senescence) | Washington, DC, USA | VENµS and Sentinel-2 | NDVI (downward trend) | Gao et al., 2020 [15] |
2. Materials and Methods
2.1. Survey Data
2.2. Remote Sensing Analyses
2.2.1. Landsat OLI Observations
2.2.2. Landsat Analysis-Ready Data
2.2.3. Band Math for Random Forest Inputs
2.3. Random Forest Classification
2.3.1. Model Building
- First level: NDVI—we used the maximum of fall (1 October–1 December) NDVI observations for each pixel.
- Second level: VisNIR—we used bands and indices from the visible and near infrared regions of the spectrum (see Table 2), in addition to the NDVI from the first level.
- Third level: SWIR—we added two tillage indices, based on the shortwave infrared bands (see Equations (2) and (3) to the input datasets in the third level of complexity, in addition to all metrics in levels 1 and 2.
- Fourth level: ST (Thermal)—we added the median of fall observations (October—1 December) and the absolute maximum ST from the Landsat provisional surface temperature product to the input datasets in this fourth and final level of complexity, in addition to all metrics in levels 1, 2, and 3.
2.3.2. Model Validation
3. Results
3.1. Within-Model Training Accuracy Model Results
3.2. Model Testing Results for Novel Predictions in Posey and Gibson Counties
4. Discussion
5. Conclusions and Future Directions: Implications for Policy and Management
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of Land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration and aggregation by cover cropping. J. Soil Water Conserv. 2015, 70, 329–339. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 1–17. [Google Scholar] [CrossRef]
- Feng, Z.; Leung, L.R.; Hagos, S.; Houze, R.A.; Burleyson, C.D.; Balaguru, K. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 2016, 7, 13429. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, J.G.; Roesch-McNally, G. Cover crop adoption in Iowa: The role of perceived practice characteristics. J. Soil Water Conserv. 2015, 70, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R. Growing a Revolution Bringing Our Soil Back to Life; WW Norton & Company: New York, NY, USA, 2018; ISBN 978-0-393-35609-0. [Google Scholar]
- Moyer, J.; Smith, A.; Rui, Y.; Hayden, J. Regenerative Agriculture and the Soil Carbon Solution. Available online: https://rodaleinstitute.org/wp-content/uploads/Rodale-Soil-Carbon-White-Paper_v11-compressed.pdf (accessed on 15 May 2021).
- USDA National Agriculture Statistics Service 2017 Census of Agriculture. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/index.php (accessed on 11 November 2020).
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Hively, W.D.; Duiker, S.; McCarty, G.; Prabhakara, K. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania. J. Soil Water Conserv. 2015, 70, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Thieme, A.; Yadav, S.; Oddo, P.C.; Fitz, J.M.; McCartney, S.; King, L.; Keppler, J.; McCarty, G.W.; Hively, W.D. Using NASA earth observations and google earth engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sens. Environ. 2020, 248, 111943. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-green-blue high-resolution digital images for assessment of winter cover crop biomass. GISci. Remote Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.-C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Hively, W.D. Detecting cover crop end-of-season using VENµS and sentinel-2 Satellite imagery. Remote Sens. 2020, 12, 3524. [Google Scholar] [CrossRef]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Hively, W.D.; Lang, M.; McCarty, G.W.; Keppler, J.; Sadeghi, A.; McConnell, L.L. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. J. Soil Water Conserv. 2009, 64, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Natural Resources Conservation Service (NRCS) Cover Crop-Planting Specification Guide-NH-340 2011. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1081555.pdf (accessed on 15 November 2020).
- Hagen, S.C.; Delgado, G.; Ingraham, P.; Cooke, I.; Emery, R.; Fisk, J.P.; Melendy, L.; Olson, T.; Patti, S.; Rubin, N.; et al. Mapping conservation management practices and outcomes in the corn belt using the operational tillage information system (OpTIS) and the denitrification–decomposition (DNDC) model. Land 2020, 9, 408. [Google Scholar] [CrossRef]
- Bannari, A.; Staenz, K.; Champagne, C.; Khurshid, K.S. Spatial variability mapping of crop residue using hyperion (EO-1) hyperspectral data. Remote Sens. 2015, 7, 8107–8127. [Google Scholar] [CrossRef] [Green Version]
- Sonmez, N.K.; Slater, B. Measuring intensity of tillage and plant residue cover using remote sensing. Eur. J. Remote Sens. 2016, 49, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Serbin, G.; Daughtry, C.S.T.; Hunt, E.R.; Reeves, J.B.; Brown, D.J. Effects of soil composition and mineralogy on remote sensing of crop residue cover. Remote Sens. Environ. 2009, 113, 224–238. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Shermeyer, J.; McCarty, G.W.; Quemada, M. Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave infrared residue indices. Remote Sens. 2018, 10, 1657. [Google Scholar] [CrossRef] [Green Version]
- Seifert, C.A.; Azzari, G.; Lobell, D.B. Satellite detection of cover crops and their effects on crop yield in the midwestern United States. Environ. Res. Lett. 2018, 13, 064033. [Google Scholar] [CrossRef]
- Quemada, M.; Hively, W.D.; Daughtry, C.S.T.; Lamb, B.T.; Shermeyer, J. Improved crop residue cover estimates obtained by coupling spectral indices for residue and moisture. Remote Sens. Environ. 2018, 206, 33–44. [Google Scholar] [CrossRef]
- Hively, W.D.; Lee, S.; Sadeghi, A.M.; McCarty, G.W.; Lamb, B.T.; Soroka, A.M.; Keppler, J.; Yeo, I.-Y.; Moglen, G.E. Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and soil and water assessment tool (SWAT) modeling. J. Soil Water Conserv. 2020, 75, 362375. [Google Scholar] [CrossRef]
- Fan, X.; Vrieling, A.; Muller, B.; Nelson, A. Winter cover crops in Dutch maize fields: Variability in quality and its drivers assessed from multi-temporal sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102139. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Sun, L.; Schulz, K. The improvement of land cover classification by thermal remote sensing. Remote Sens. 2015, 7, 8368–8390. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A new model of gross primary productivity for north American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Jang, J.-D.; Viau, A.A.; Anctil, F. Thermal-water stress index from satellite images. Int. J. Remote Sens. 2006, 27, 1619–1639. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.; Schott, J.R.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 May 2021).
- Agriculture in the Midwest|USDA Climate Hubs. Available online: https://www.climatehubs.usda.gov/hubs/midwest/topic/agriculture-midwest (accessed on 5 May 2021).
- Mannering, J.V.; Griffith, D.R.; Johnson, K.D. Winter Cover Crops—Their Value and Management. Available online: https://www.agry.purdue.edu/Ext/forages/rotational/articles/PDFs-pubs/winter-cover-crops.pdf (accessed on 15 May 2021).
- ISDA Cover Crop and Tillage Transect Data. Available online: https://www.in.gov/isda/divisions/soil-conservation/cover-crop-and-tillage-transect-data (accessed on 5 May 2021).
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The harmonized landsat and sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E.; Sumner, M.; Hijmans, R.; Rouault, E.; Bivand, M.R. Package ‘Rgdal.’ Bindings for the Geospatial Data. Abstraction Library. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 15 October 2020).
- Team, R.C. R: The R Project for Statistical Computing. 2019. Available online: https://www.r-project.org/ (accessed on 30 March 2020).
- Claverie, M.; Masek, J.G.; Ju, J.; Dungan, J.L. Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2017.
- Hively, W.D.; Shermeyer, J.; Lamb, B.T.; Daughtry, C.T.; Quemada, M.; Keppler, J. Mapping crop residue by combining landsat and WorldView-3 satellite imagery. Remote Sens. 2019, 11, 1857. [Google Scholar] [CrossRef] [Green Version]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 2008, 28. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Asner, G.P.; Lobell, D.B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sens. Environ. 2000, 74, 99–112. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Hanan, N.; Kabat, P.; Lesch, L. A remote sensing study of the NDVI–Ts relationship and the transpiration from sparse vegetation in the Sahel based on high-resolution satellite data. Remote Sens. Environ. 1999, 69, 224–240. [Google Scholar] [CrossRef]
- Calkins, J.B.; Swanson, B.T. Comparison of conventional and alternative nursery field management systems: Soil physical properties. J. Environ. Hortic. 1998, 16, 90–97. [Google Scholar] [CrossRef]
- Lombardozzi, D.L.; Bonan, G.B.; Wieder, W.; Grandy, A.S.; Morris, C.; Lawrence, D.L. Cover crops may cause winter warming in snow-covered regions. Geophys. Res. Lett. 2018, 45, 9889–9897. [Google Scholar] [CrossRef]
- Hulley, G.; Hook, S.; Fisher, J.; Lee, C. ECOSTRESS, a NASA earth-ventures instrument for studying links between the water cycle and plant health over the diurnal cycle. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5494–5496. [Google Scholar]
- Hanrahan, B.R.; Tank, J.L.; Christopher, S.F.; Mahl, U.H.; Trentman, M.T.; Royer, T.V. Winter cover crops reduce nitrate loss in an agricultural watershed in the central U.S. Agric. Ecosyst. Environ. 2018, 265, 513–523. [Google Scholar] [CrossRef]
- Thiele, R. Sen. Mike Braun’s Bill Could Help Reward Climate-Friendly Farmers. Available online: https://indianapublicradio.org/news/2020/06/sen-mike-brauns-bill-could-help-reward-climate-friendly-farmers/ (accessed on 12 April 2021).
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Still, C.J.; Rastogi, B.; Page, G.F.M.; Griffith, D.M.; Sibley, A.; Schulze, M.; Hawkins, L.; Pau, S.; Detto, M.; Helliker, B.R. Imaging canopy temperature: Shedding (thermal) light on ecosystem processes. New Phytol. 2021, 230, 1746–1753. [Google Scholar] [CrossRef]
County | Cover Cropped (Approximate % of GPS Points in Ground Surveys) | Reported County Cover Cropping Rate (from Indiana Conservation Tillage Program Estimates) |
---|---|---|
Benton | 3.8% | 5% (corn), 6% (soy) |
Gibson | 29% | 27% (corn), 14% (soy) |
Posey | 39% | 34% (corn), 22% (soy) |
Warren | 7.2% | 7% (corn), 7% (soy) |
White | 2.6% | 3 % (corn), 4% (soy) |
Metric | Math Applied | Reference(s) | Models Included |
---|---|---|---|
NDVI | Maximum of fall observations (1 October—1 December) | Skakun et al., 2017 [14] | First level |
NDVI | • Minimum of fall observations • Median of fall observations • Amplitude (annual max (1 October—30 September)—fall max (1 October—1 December)) • Annual maximum of NDVI (1 October—30 September) • Ratio of Fall maximum NDVI to annual maximum NDVI (1 October—30 September) | Hagen et al., 2020 [19] | Second level |
B3 (Green Band) | Median of fall Observations (1 October—1 December) | Seifert et al., 2018 [24] | Second level |
B5 (NIR Band) | Median of fall Observations (1 October—1 December) | Seifert et al., 2018 [24] | Second level |
B6 (SWIR 1 Band) | Median of fall Observations (1 October—1 December) | Seifert et al., 2018 [24] | Second level |
Elapsed Days | Sum from 11/1 to annual maximum NDVI image date (1 October—30 September) | Seifert et al., 2018 [24] | Second level |
Normalized Difference Tillage Index (NDTI) | Median of fall Observations (1 October—1 December) | Hively 2019 [42] | Third level |
Simple Tillage Index (STI) | Median of fall Observations (1 October—1 December) | Van Deventer 1997 [43] | Third level |
Surface Temperature (ST) | Median of fall Observations (1 October—1 December) | Cook et al., 2014 [33] (Product) | Fourth level |
B10 (Thermal infrared 2 Band) | • Median of fall Observations (1 October—1 December) • Annual maximum of B10 (1 October—30 September) • Thermal Ratio (ratio of fall maximum B10 to annual maximum B10). | Developed for this paper | Fourth level |
Model | First Level: NDVI | Second Level: VisNIR | Third Level: SWI | Fourth Level: Thermal ST |
---|---|---|---|---|
Two-class model: Cover crop presence/absence | Acc = 89.7% k = 0.79 mtry = 1 | Acc = 95.2% k = 0.91 mtry = 2 | Acc = 95.4% k = 0.91 mtry = 2 | Acc = 95.5% k = 0.91 mtry = 2 |
Three-class model: Cover crop vs. residue vs. bare soil (conventional till) | Acc = 72.1% k = 0.58 mtry = 2 | Acc = 77.1% k = 0.66 mtry = 1 | Acc = 78.9% k = 0.68 mtry = 1 | Acc = 79.7% k = 0.70 mtry = 3 |
Model | First Level: NDVI | Second Level: VisNIR | Third Level: SWIR | Fourth Level: Thermal ST |
---|---|---|---|---|
Two-class model: Cover crop presence/absence | Acc = 72.0% k = 0.2 | Acc = 85.6% k = 0.61 | Acc = 87.4% k = 0.67 | Acc = 89.4% k = 0.72 |
Three-class model: Cover crop vs. residue vs. bare soil (conventional till) | Acc = 43.3% k = 0.12 | Acc = 74.8% k = 0.62 | Acc = 74.1% k = 0.61 | Acc = 79.8% k = 0.69 |
Ground Truth | |||
---|---|---|---|
Cover Crops | No cover crop | ||
Predicted | Cover Crops | 77 | 19 |
Conventional | 23 | 278 | |
Two Class Model Accuracy = 89.4% | |||
Kappa = 0.72 | |||
Positive Class Accuracy—cover crops = 80.2% |
Ground Truth | ||||
---|---|---|---|---|
Cover Crops | Crop Residue | Bare Soil | ||
Predicted | Cover Crops | 86 | 13 | 19 |
Residue | 3 | 101 | 10 | |
Bare Soil | 11 | 24 | 130 | |
Three Class Model Accuracy = 79.9% | ||||
Kappa = 0.69 | ||||
Positive Class Accuracy—cover crops = 72.8 % | ||||
Positive class Accuracy—residue = 88.6% |
Two-Class Model | Variable Importance | Three-Class Model | ||
---|---|---|---|---|
ST | 100 | Most Important | ST | 100 |
STI | 68.9 | STI | 82.8 | |
B10-fullmax | 57.4 | NDTI | 74.0 | |
NDTI | 54.0 | B10_fullmax | 69.2 | |
NDVI-min | 54.0 | NDVI_med | 59.8 | |
NDVI-med | 53.9 | NDVI_min | 46.8 | |
NDVI-max | 47.0 | NDVI-mean | 40.1 | |
NDVI-fullmax | 30.5 | NDVI-max | 39.0 | |
NDVI-mean | 29.2 | B6 | 38.2 | |
NDVI-amp | 28.6 | NDVI_fullmax | 36.0 | |
NDVI_ratio | 25.5 | NDVI_amp | 31.9 | |
B6 | 25.2 | NDVI-ratio | 31.3 | |
Elapsed Days | 24.6 | B5 | 24.8 | |
B10 | 20.3 | Therm-Ratio | 22.5 | |
B5 | 19.9 | B10 | 21.0 | |
Therm_ratio | 19.6 | Elapsed Days | 15.7 | |
B3 | 10.7 | B3 | 8.8 | |
B9 | 0 | Least Important | B9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnes, M.L.; Yoder, L.; Khodaee, M. Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery. Remote Sens. 2021, 13, 1998. https://doi.org/10.3390/rs13101998
Barnes ML, Yoder L, Khodaee M. Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery. Remote Sensing. 2021; 13(10):1998. https://doi.org/10.3390/rs13101998
Chicago/Turabian StyleBarnes, Mallory Liebl, Landon Yoder, and Mahsa Khodaee. 2021. "Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery" Remote Sensing 13, no. 10: 1998. https://doi.org/10.3390/rs13101998
APA StyleBarnes, M. L., Yoder, L., & Khodaee, M. (2021). Detecting Winter Cover Crops and Crop Residues in the Midwest US Using Machine Learning Classification of Thermal and Optical Imagery. Remote Sensing, 13(10), 1998. https://doi.org/10.3390/rs13101998