Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler
Abstract
:1. Introduction
2. Polarimeter Description
2.1. Receiver Architecture
2.2. Calibration Injector
3. Calibration Method
4. Experimental Results
4.1. Polarimetric Radiometer Calibration
4.2. Measurement of a Broadband Polarized Noise Wave
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Zhu, L.; Suomalainen, J.; Liu, J.; Hyyppä, J.; Kaartinen, H.; Haggren, H. A Review: Remote Sensing Sensors. Multi-purposeful Application of Geospatial Data; IntechOpen: London, UK, 2017; Chapter 2; ISBN 978-1-78923-109-0. Available online: https://www.intechopen.com/books/multi-purposeful-application-of-geospatial-data/a-review-remote-sensing-sensors (accessed on 1 December 2017). [CrossRef] [Green Version]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2014; ISBN 978-0-472-11935-6. [Google Scholar]
- Srivastava, H.; Patel, P.; Sharma, Y.; Navalgund, R. Large-Area Soil Moisture Estimation Using Multi-Incidence-Angle RADARSAT-1 SAR Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2528–2535. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil Moisture Mapping using Sentinel-1 Images: Algorithm and Preliminary Validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Gorrab, A.; Zribi, M.; Baghdadi, N.; Mougenot, B.; Fanise, P.; Chabaane, Z. Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images. Remote Sens. 2015, 7, 10098–10116. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Jackson, R.D. Soil Moisture Inferences from Thermal-Infrared Measurements of Vegetation Temperatures. IEEE Trans. Geosci. Remote Sens. 1982, 20, 282–286. [Google Scholar] [CrossRef]
- Kidd, C.; Matsui, T.; Ringerud, S. Precipitation Retrievals from Passive Microwave Cross-Track Sensors: The Precipitation Retrieval and Profiling Scheme. Remote Sens. 2021, 13, 947. [Google Scholar] [CrossRef]
- Koch, P.M.; Kesteven, M.; Nishioka, H.; Jiang, H.; Lin, K.Y.; Umetsu, K.; Romeo, B. The AMiBA Hexapod Telescope Mount. Astrophys. J. 2009, 694, 1670. [Google Scholar] [CrossRef]
- Simon, S.M.; Appel, J.W.; Campusano, L.E.; Choi, S.K.; Crowley, K.T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S.P.; Kusaka, A.; Nati, F.; et al. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate. J. Low Temp. Phys. 2016, 184, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Rubiño-Martin, J.A.; Rebolo, R.; Aguiar, M.; Génova-Santos, R.; Gómez-Reñasco, F.; Herreros, J.M.; Hoyland, R.J.; López-Caraballo, C.; Santos, A.E.P.; De La Rosa, V.S.; et al. The QUIJOTE-CMB experiment: Studying the polarisation of the galactic and cosmological microwave emissions. In Proceedings of the SPIE, Ground-Based and Airborne Telescopes IV. Int. Society for Optics and Photonics, Amsterdam, The Netherlands, 1 July 2012; Volume 8444. [Google Scholar] [CrossRef] [Green Version]
- Cornelison, J.; Ade, P.A.R.A.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.B.; Bischoff, C.; Bock, J.; Boenish, H.; Bullock, E.; et al. Polarization Calibration of the BICEP3 CMB polarimeter at the South Pole. In Proceedings of the SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, Online Only, 13 December 2020; Volume 11453. [Google Scholar] [CrossRef]
- Kosowsky, A. Cosmic Microwave Background Polarization. Ann. Phys. 1996, 246, 49–85. [Google Scholar] [CrossRef] [Green Version]
- Buzzelli, A.; Cabella, P.; Gasperis, G.; Vittorio, N. Polarization of Cosmic Microwave Background. J. Phys. Conf. Ser. 2016, 689, 12003. [Google Scholar] [CrossRef] [Green Version]
- Aumont, J.; Macías-Pérez, J.F.; Ritacco, A.; Ponthieu, N.; Mangilli, A. Absolute calibration of the polarisation angle for future CMB B-mode experiments from current and future measurements of the Crab nebula. Astron. Astrophys. 2020, 634, A100. [Google Scholar] [CrossRef] [Green Version]
- Gaier, T.C. Coherent radiometers for cosmic microwave background polarization detection. Proc. SPIE 4843 Polarim. Astron. 2003. [Google Scholar] [CrossRef]
- Aiken, R.W. Testing Inflationary Cosmology with the BICEP1 and BICEP2 Experiments. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2013. [Google Scholar]
- The Polarbear Collaboration; Ade, P.A.R.; Aguilar, M.; Akiba, Y.; Arnold, K.; Baccigalupi, C.; Barron, D.; Beck, D.; Bianchini, F.; Boettger, D.; et al. A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Sub-degree with POLARBEAR. Astrophys. J. 2014, 794, 171–192. [Google Scholar] [CrossRef] [Green Version]
- Padilla, I.L.; Eimer, J.R.; Li, Y.; Addison, G.E.; Ali, A.; Appel, J.W.; Bennett, C.L.; Bustos, R.; Brewer, M.K.; Chan, M.; et al. Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz. arXiv 2019, arXiv:1911.00391. [Google Scholar] [CrossRef]
- Choi, S.K.; Hasselfield, M.; Ho, S.-P.P.; Koopman, B.; Lungu, M.; Abitbol, M.H.; Addison, G.E.; Ade, P.A.R.; Aiola, S.; Alonso, D.; et al. The Atacama Cosmology Telescope: A measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz. J. Cosmol. Astropart. Phys. 2020. [Google Scholar] [CrossRef]
- Addamo, G.; Ade, P.A.R.; Baccigalupi, C.; Baldini, A.M.; Battaglia, P.M.; Battistelli, E.S.; Baù, A.; de Bernardis, P.; Bersanelli, M.; Biasotti, M.; et al. The Large Scale Polarization Explorer (LSPE) for CMB Measurements: Performance Forecast. arXiv 2020, arXiv:2008.11049. [Google Scholar]
- Collett, E. Field Guide to Polarization; SPIE Press: Bellingham, WA, USA, 2012; ISBN 978-0-8194-5868-1. [Google Scholar]
- Spinelli, S.; Fabbian, G.; Tartari, A.; Zannoni, M.; Gervasi, M. A template of atmospheric O2 circularly polarized emission for cosmic microwave background experiments. Mon. Not. R. Astron. Soc. 2011, 414, 3272–3280. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, C.; Brizius, A.; Buder, I.; Chinone, Y.; Cleary, K.; Dumoulin, R.N.; Kusaka, A.; Monsalve, R.; Næss, S.; Newburgh, L.B.; et al. The Q/U Imaging Experiment. Astrophys. J. 2013, 768, 9. [Google Scholar] [CrossRef] [Green Version]
- Gasiewski, A.J.; Kunkee, D.B. Calibration and applications of polarization-correlating radiometers. IEEE Trans. Microw. Theory Tech. 1993, 41, 767–773. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Swetz, D.S.; Timbie, P.T. Calibration of millimeter-wave polarimeters using a thin dielectric sheet. IEEE Trans. Microw. Theory Techn. 2002, 50, 2135–2141. [Google Scholar] [CrossRef]
- Lahtinen, J.; Gasiewski, A.J.; Klein, M.; Corbella, I.S. A calibration method for fully polarimetric microwave radiometers. IEEE Trans. Geosci. Remote Sens. 2003, 41, 588–602. [Google Scholar] [CrossRef]
- Lahtinen, J.; Hallikainen, M.T. Retardation Plate for the Calibration of a Fully Polarimetric Radiometer: Determination of Characteristics. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 3046–3054. [Google Scholar] [CrossRef]
- Peng, J.; Ruf, C.S. Calibration Method for Fully Polarimetric Microwave Radiometers Using the Correlated Noise Calibration Standard. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3087–3097. [Google Scholar] [CrossRef]
- King, O.G.; Jones, M.E.; Blackhurst, E.J.; Copley, C.; Davis, R.J.; Dickinson, C.; Taylor, A.C. The C-Band All-Sky Survey (C-BASS): Design and implementation of the northern receiver. Mon. Not. R. Astron. Soc. 2014, 438, 2426–2439. [Google Scholar] [CrossRef]
- Gentili, G.G.; Lucci, L.; Nesti, R.; Pelosi, G.; Selleri, S. A Novel Design for a Circular Waveguide Directional Coupler. IEEE Trans. Microw. Theory Tech. 2009, 57, 1840–1849. [Google Scholar] [CrossRef]
- Yuan, T.; Yin, X.; Zhao, H.; Shi, J.; Zhong, W.; Liu, Q. A design of Q-band noise injector. In Proceedings of the 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014; pp. 1162–1164. [Google Scholar] [CrossRef]
- Peverini, O.A.; Tascone, R.; Carretti, E.; Virone, G.; Olivieri, A.; Orta, R.; Monari, J. On-board Calibration System for Millimeter-Wave Radiometers based on Reference-Polarized Signal Injection. IEEE Trans. Microw. Theory Tech. 2006, 54, 412–420. [Google Scholar] [CrossRef]
- Liang, W.; Jia, Z.; Qiu, X.; Hong, J.; Zhang, Q.; Lei, B.; Zhang, F.; Deng, Z.; Wang, A. Polarimetric Calibration of the GaoFen-3 Mission Using Active Radar Calibrators and the Applicable Conditions of System Model for Radar Polarimeters. Remote Sens. 2019, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Aja, B.; Villa, E.; de la Fuente, L.; Artal, E. Double Square Waveguide Directional Coupler for Polarimeter Calibration. IEEE Trans. Microw. Theory Tech. 2019, 67, 1425–1431. [Google Scholar] [CrossRef]
- Aja, B.; Artal, E.; de la Fuente, L.; Villa, E. Acoplador Direccional Doble en Guía Cuadrada. Spanish Patent ES2764742B2, March 2021. (In Spanish). [Google Scholar]
- Aja, B.; de la Fuente, L.; Artal, E.; Villa, E.; Cano-de-Diego, J.L.; Mediavilla, A. 10- to 19.5-GHz Microwave Receiver of an Electro-Optical Interferometer for Radio Astronomy. J. Astron. Telesc. Instrum. Syst. 2019, 5, 035007. [Google Scholar] [CrossRef]
- Cano, J.L.; Mediavilla, A. Quasi-Octave Bandwidth In-Phase Three-Layer Platelet Orthomode Transducer Using Improved Power Combiners. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1086–1088. [Google Scholar] [CrossRef]
Wave | Position SPDT | Position SPDT | Injected Wave Phase | Stokes Power Vector |
---|---|---|---|---|
Linearly Horizontal polarized (0°); | Noise source (Th) | Reference load (Tc) | ||
Linearly Vertical polarized (90°); | Reference load (Tc) | Noise source (Th) | ||
Linearly 45° polarized (45°); | Noise source (Th) | Noise source (Th) |
Calibration Standard Parameter | Noise Source ENR (dB) | Loss (dB) | Phase (deg) |
---|---|---|---|
Random Uncertainty | 0.001 | 0.001 | 0.1 |
Systematic Uncertainty | 0.22 | 0.02 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente, L.; Aja, B.; Villa, E.; Artal, E. Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler. Remote Sens. 2021, 13, 2109. https://doi.org/10.3390/rs13112109
de la Fuente L, Aja B, Villa E, Artal E. Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler. Remote Sensing. 2021; 13(11):2109. https://doi.org/10.3390/rs13112109
Chicago/Turabian Stylede la Fuente, Luisa, Beatriz Aja, Enrique Villa, and Eduardo Artal. 2021. "Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler" Remote Sensing 13, no. 11: 2109. https://doi.org/10.3390/rs13112109
APA Stylede la Fuente, L., Aja, B., Villa, E., & Artal, E. (2021). Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler. Remote Sensing, 13(11), 2109. https://doi.org/10.3390/rs13112109