Mapping Land Surface Temperature Developments in Functional Urban Areas across Europe
Abstract
:1. Introduction
- SUHI and heat anomalies are an increasing problem due to urbanization processes, and urban centers are particularly affected;
- Land use has similar effects on LST in all functional urban areas across Europe.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. MODIS Land Surface Temperature
2.2.2. Calculation of STI and LST Changes
2.2.3. Land Use and Land Cover
2.2.4. Calculation of CLC and LST
3. Results
3.1. LST Change
3.1.1. LST in the First Two Weeks of August in Selected FUAs
3.1.2. Development of LST Maxima from 2000 to 2020
3.2. LST of Different Land Use/Land Cover Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruppert, T.; Sparwasser, N.; Taubenböck, H. Temperatureffekte in der Stadt-Umland-Region München. In Fernerkundung im urbanen Raum—Erdbeobachtung Auf dem Weg zur Planungspraxis; Taubenböck, H., Dech, S., Eds.; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2010; pp. 62–65. [Google Scholar]
- Dikau, R.; Pohl, J. Hazards: Naturgefahren und Naturrisiken. In Geographie. Physische Geographie und Humangeographie; Gebhardt, H., Ed.; Spektrum Akademischer Verlag: Berlin/Heidelberg, Germany, 2011; pp. 1114–1169. [Google Scholar]
- Schmidt-Seiwert, V.; Duvernet, C.; Hellings, A.; Gauk, M.; Binot, R.; Kiel, L.; Thul, B. Atlas for the Territorial Agenda. Maps on European Territorial Development; Building and Community (BMI) Federal Ministry of the Interior and Urban Affairs and Spatial Development (BBSR) Federal Institute for Research on Building: Berlin, Germany, 2020. [Google Scholar]
- European Union. Urban Data Platform Plus. Territorial Trends. Total Population—Projections. Set of Indicators Produced by the LUISA Modelling Platform. Available online: https://urban.jrc.ec.europa.eu/#/en/trends?context=Default&territorialscope=EU28&level=FUA&indicator=POP_LUISA_PROJ (accessed on 23 March 2021).
- Naumann, G.; Russo, S.; Formetta, G.; Ibaretta, D.; Forzieri, G.; Girardello, M.; Feyen, L. Global Warming and Human Impacts of Heat and Cold Extremes in the EU; JRC PESETA IV Project—Task 11; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Kemen, J.; Schäfer-Gemein, S.; Kistemann, T. Klimaanpassung und Hitzeaktionspläne. In Informationen zu Raumentwicklung; BBSR; Franz Steiner Verlag: Stuttgart, Germany, 2020; Volume 47, pp. 58–69. [Google Scholar]
- IPCC, Intergovernmental Panel on Climate Change. Climate Change 2001: Impacts, Adaption, Vulnerability; McCarths, J.J., Ed.; Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Parlow, E. Besonderheiten des Stadtklimas. In Geographie. Physische Geographie und Humangeographie; Gebhardt, H., Ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2011; pp. 287–294. [Google Scholar]
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605–606, 426–435. [Google Scholar] [CrossRef]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling Land Surface Temperature in Urban Area: A Case Study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef] [Green Version]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T.; Bechtel, B. Assessing the Capability of a Downscaled Urban Land Surface Temperature Time Series to Reproduce the Spatiotemporal Features of the Original Data. Remote Sens. 2016, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates. In Urban Heat Island; Cambridge University Press: Cambridge, UK, 2017; pp. 197–237. [Google Scholar] [CrossRef] [Green Version]
- Martilli, A.; Roth, M.; Chow, W.; Demuzere, M.; Lipson, M.; Krayenhoff, E.S.; Sailor, D.; Nazarian, N.; Voogt, J.; Wouters, H.; et al. Summer Average Urban-Rural Surface Temperature Differences Do Not Indicate the Need for Urban Heat Reduction. Available online: osf.io/8gnbf (accessed on 12 February 2021).
- Mitraka, Z.; Chrysoulakis, N.; Doxani, G.; Del Frate, F.; Berger, M. Urban Surface Temperature Time Series Estimation at the Local Scale by Spatial-Spectral Unmixing of Satellite Observations. Remote Sens. 2015, 7, 4139–4156. [Google Scholar] [CrossRef] [Green Version]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T. A satellite-based system for continuous monitoring of Surface Urban Heat Islands. Urban Clim. 2015, 14, 141–153. [Google Scholar] [CrossRef]
- Kraus, H. Die Atmosphäre der Erde. Eine Einführung in die Meteorologie, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Coackley, J.A. Reflectance and Albedo, Surface. In Encyclopedia of the Atmosphere; Academic Press: Cambridge, MA, USA, 2003; pp. 1914–1923. [Google Scholar]
- Kuchling, H. Taschenbuch der Physik; Carl Hanser Verlag: Munich, Germany, 2011. [Google Scholar]
- Monteith, J.L. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 1981, 107, 1–27. [Google Scholar] [CrossRef]
- NASA. Land Surface Temperature. Available online: https://earthobservatory.nasa.gov/global-maps/MOD_LSTD_M (accessed on 1 April 2021).
- Keramitsoglou, I.; Kiranoudis, C.T.; Ceriola, G.; Weng, Q.; Rajasekar, U. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens. Environ. 2011, 115, 3080–3090. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.A.; Taubenböck, H. Understanding an Urbanizing Planet: Strategic Directions for Remote Sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Liu, Y.; Fan, P.; Ye, X.; Wu, C. Assessing spatial pattern of urban thermal environment in Shanghai, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 899–911. [Google Scholar] [CrossRef]
- Pan, J. Analysis of human factors on urban heat island and simulation of urban thermal environment in Lanzhou city, China. J. Appl. Remote Sens. 2015, 9, 1. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Du, P.; Chen, J.; Bai, X.; Han, W. Understanding the seasonal variations of land surface temperature in Nanjing urban area based on local climate zone. Urban Clim. 2020, 33, 100657. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Reicher, C. Staedtebauliches Entwerfen; Springer: Wiesbaden, Germany, 2017. [Google Scholar]
- Dose, M. Eine Analyse des Ist-Zustandes sowie planungs-bzw. umweltrechtlicher Instrumente zur Optimierung der Freiraumqualitaeten. In Soziale und Oekologische Freiraumqualitaeten Suburbaner Gewerbegebiete; Technical University of Berlin: Berlin, Germany, 2004. [Google Scholar]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Bechtel, B. (Ed.) Earsel keynote speach: Urban Climate & Urban Green. Urban environmental change from space. In EARSeL Joint Workshop 2021. EO for Sustainable Cities and Communities; The Centre for Research and Technology: Liège, Belgium, 2021. [Google Scholar]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Schwarz, N.; Manceur, A. Analyzing the Influence of Urban Forms on Surface Urban Heat Islands in Europe. J. Urban Plan. Dev. 2014, 141. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 4791, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, D.; Liu, S. Data concurrency is required for estimating urban heat island intensity. Environ. Pollut. 2016, 208, 118–124. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, X.; Dong, J.; Qin, Y. Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A comparison of Countries at Different Developmental Phases. Sustainability 2016, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- European Union. Living in the EU. Size and Population. Available online: https://europa.eu/european-union/about-eu/figures/living_en (accessed on 14 September 2020).
- Schmidt-Seiwert, V.; Hellings, A. Nachhaltige Landnutzungsveränderungen und Urbanisierung in Europa? Inf. Forsch. BBSR 2020, 4, 2. [Google Scholar]
- Eurostat. Urban Audit 2020—Area Management—Dataset. Available online: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/urban-audit (accessed on 21 January 2021).
- Dijkstra, L.; Poelman, H.; Veneri, P. The EU-OECD Definition of a Functional Urban Area; OECD Regional Working Papers; OECD: Paris, France, 2019; Volume 11/2019, pp. 1–18. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD); Version 3.3; University of California: Santa Barbara, CA, USA, 1999. [Google Scholar]
- Wang, K.; Liu, J.; Wan, Z.; Wang, P.; Sparrow, M.; Haginoya, S. Preliminary accuracy assessment of MODIS land surface temperature products at a semi-desert site. SPIE Int. Soc. Optical Eng. 2005, 5832, 452–461. [Google Scholar]
- Mao, K.; Qin, Z.; Shi, J.; Gong, P. A practical spilt-window algorithm for retrieving land-surface temperature from MODIS data. Int. J. Remote Sens. 2005, 26, 3181–3204. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst, DWD. Standardized Temperature Index (STI). Available online: https://www.dwd.de/DE/fachnutzer/landwirtschaft/dokumentationen/agrowetter/sti.pdf?__blob=publicationFile&v=3 (accessed on 26 July 2020).
- Fasel, M. Calculation of the Standardized Temperature Index. Package ‘STI’. Available online: https://cran.r-project.org/web/packages/STI/STI.pdf (accessed on 28 July 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Copernicus Programme. CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 26 August 2020).
- EEA. European Environment Agency. Global and European Temperature. Available online: https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-9/assessment (accessed on 21 August 2020).
- EEA. European Environment Agency. Indicator Assessment. Global and European temperatures. Available online: https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-10/assessment (accessed on 1 October 2020).
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated Determinants across Major Chinese Cities. Remote Sens. 2015, 7, 3670–3689. [Google Scholar] [CrossRef] [Green Version]
- Oleson, K. Contrasts between Urban and Rural Climate in CCSM4 CMIP5 Climate Change Scenarios. J. Clim. 2012, 25, 1390–1412. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Lindberg, F.; Rayner, D.; Thorsson, S. The effect of urban geometry on mean radiant temperature under future climate change: A study of three European cities. Int. J. Biometeorol. 2014, 59, 799–814. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- IPCC, Intergovernmental Panel on Climate Change. Climate Change 2014. Impacts, Adaption, and Vulnerability. Part; A. Global and Sectoral Aspects; Field, C.B., Ed.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote. Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Adachi, S.; Kimura, F.; Kusaka, H.; Duda, M.G.; Yamagata, Y.; Seya, H.; Nakamichi, K.; Aoyagi, T. Moderation of Summertime Heat Island Phenomena via Modification of the Urban Form in the Tokyo Metropolitan Area. J. Appl. Meteorol. Clim. 2014, 53, 1886–1900. [Google Scholar] [CrossRef]
- Ehlert, I.; Schweitzer, C. (Eds.) Copernicus für das Umweltmonitoring. Eine Einführung; Copernicus: Hamburg, Germany, 2018. [Google Scholar]
Conditions | STI |
---|---|
Extremely hot | ≥2.00 |
Very hot | ≥1.50 and <2.00 |
Moderately hot | ≥1.00 and <1.50 |
Near normal | <1.00 and >−1.00 |
Moderately cold | ≤−1.00 and >−1.50 |
Very cold | ≤−1.50 and >−2.00 |
Extremely cold | ≤−2.00 |
Urban Use | Urban Use |
---|---|
Urban—urban fabric 111 Continuous urban fabric 112 Discontinuous urban fabric | Urban—industry and infrastructure 121 Industrial or commercial units 122 Road and rail and associated land 123 Port areas 124 Airports |
Non-urban artificial | Urban use |
Artificial—mineral extraction sites 131 Mineral extraction sites 132 Dump sites 133 Construction sites | Urban—urban green 141 Green urban areas 142 Sport and leisure facilities |
Agriculture | Agriculture |
211 Non-irrigated arable land 212 Permanently irrigated land 213 Rice fields 221 Vineyards 222 Fruit trees and berry plantations 223 Olive groves | 231 Pastures 241 Annual crops with permanent crops 242 Complex cultivation patterns 243 Agriculture with natural vegetation 244 Agroforestry areas |
Forest | Terrestrial nature |
311 Broad-leaved forest 312 Coniferous forest 313 Mixed forest | 321 Natural grasslands 322 Moors and heathland 323 Sclerophyllous vegetation 324 Transitional woodland-shrub 331 Beaches, dunes, sands 332 Bare rocks 333 Sparsely vegetated areas 334 Burnt areas |
Wetlands | Water bodies |
335 Glaciers and perpetual snow 411 Inland marshes 412 Peat bogs 421 Salt marshes 422 Salines 423 Intertidal flats | 511 Water courses 512 Water bodies 521 Coastal lagoons 522 Estuaries 523 Sea and ocean |
Weeks | Month | Year |
---|---|---|
1; 2 | September | 2001 |
1; 2 | June | 2002 |
1; 2 | August | 2003 |
4; 1 | August/September | 2006 |
3; 4 | May | 2007 |
2; 3 | June | 2010 |
3; 4 | August | 2011 |
2; 3 | July | 2017 |
3; 4 | July | 2018 |
3; 4 | June | 2019 |
3; 4 | July | 2019 |
1; 2 | August | 2019 |
1; 2 | August | 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellings, A.; Rienow, A. Mapping Land Surface Temperature Developments in Functional Urban Areas across Europe. Remote Sens. 2021, 13, 2111. https://doi.org/10.3390/rs13112111
Hellings A, Rienow A. Mapping Land Surface Temperature Developments in Functional Urban Areas across Europe. Remote Sensing. 2021; 13(11):2111. https://doi.org/10.3390/rs13112111
Chicago/Turabian StyleHellings, Anna, and Andreas Rienow. 2021. "Mapping Land Surface Temperature Developments in Functional Urban Areas across Europe" Remote Sensing 13, no. 11: 2111. https://doi.org/10.3390/rs13112111
APA StyleHellings, A., & Rienow, A. (2021). Mapping Land Surface Temperature Developments in Functional Urban Areas across Europe. Remote Sensing, 13(11), 2111. https://doi.org/10.3390/rs13112111