Tracking Historical Wetland Changes in the China Side of the Amur River Basin Based on Landsat Imagery and Training Samples Migration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Cover Classification System
2.3. Basic Idea
2.4. Landsat-5 Data Collection in the GEE
2.5. Training Samples Collection and Migration
2.6. Training Samples Migration
2.7. RF-Based Wetland and Other Land Cover Classification
2.8. Independent Assessment of Mapping Accuracy
3. Results
3.1. Accuracy Assessment of the Historical Maps
3.2. Historical Spatial Patterns of CARB Wetlands
3.3. Temporal Changes of Wetlands and Oher Land Covers
3.4. Conversions between Wetland and Anthropogenic Land Covers
4. Discussion
4.1. Advantages and Uncertainties of the Migrated Training Samples
4.2. Lost and Conservation of Wetlands on the CARB
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Jia, M.; Mao, D.; Wang, Z.; Ren, C.; Zhu, Q.; Li, X.; Zhang, Y. Tracking long-term floodplain wetland changes: A case study in the China side of the Amur River Basin. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102185. [Google Scholar] [CrossRef]
- Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Tian, Y.; Wang, Z.; Jia, M.; Du, J.; Song, C. Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. J. Environ. Manag. 2021, 280, 111670. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, G.V.; Verkhoturov, A.L.; Korolev, S.P. Impact of Deforestation on Streamflow in the Amur River Basin. Geosciences 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Song, K.S.; Ma, W.H.; Ren, C.Y.; Zhang, B.; Liu, D.W.; Chen, J.M.; Song, C.C. Loss and Fragmentation of Marshes in the Sanjiang Plain, Northeast China, 1954–2005. Wetlands 2011, 31, 945–954. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, L.; Xue, Z.; Mingju, E.; Jiang, M.; Lu, X.; Yang, S.; Shen, X.; Liu, Z.; Sun, G.; et al. Impacts of Agricultural and Reclamation Practices on Wetlands in the Amur River Basin, Northeastern China. Wetlands 2018, 38, 383–389. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. Int. J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Gong, P.; Geng, X.; Zhao, Y. Improving the Accuracy of the Water Surface Cover Type in the 30 m FROM-GLC Product. Remote Sens. 2015, 7, 13507–13527. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Zhang, Y.; Cheng, Q.; Tsou, J.; Jiang, T.; San Liang, X. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 252–261. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.; Lin, G.; Lin, H.; Tang, D. Zonation and directional dynamics of mangrove forests derived from time-series satellite imagery in Mai Po, Hong Kong. Sustainability 2018, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Z.; Fu, D.; Tsou, J.Y.; Jiang, T.; San Liang, X.; Lu, X. Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 173–178. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. Int. J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recogn. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. Int. J. Photogramm. Remote Sens. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Foody, G.; Arora, M. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int. J. Remote Sens. 1997, 18, 799–810. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef] [Green Version]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated training sample extraction for global land cover mapping. Remote Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Simonov, E.A.; Dahmer, T.D. Amur-Heilong River Basin Reader; Ecosystems Hongkong: Hongkong, China, 2008. [Google Scholar]
- Jia, H.; Pan, D.; Zhang, W. Health Assessment of Wetland Ecosystems in the Heilongjiang River Basin, China. Wetlands 2015, 35, 1185–1200. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change detection and classification methods. Int. J. Photogramm. Remote Sens. 2012, 71, 86–95. [Google Scholar] [CrossRef]
- Carvalho Junior, O.A.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A. A new approach to change vector analysis using distance and similarity measures. Remote Sens. 2011, 3, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. Int. J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Liu, H.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Rogers, A.; Kearney, M. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Yan, F. Large-Scale Marsh Loss Reconstructed from Satellite Data in the Small Sanjiang Plain since 1965: Process, Pattern and Driving Force. Sensors 2020, 20, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ding, S.; Zou, Y.; Xue, Z.; Lyu, X.; Wang, G. Review of Rapid Transformation of Floodplain Wetlands in Northeast China: Roles of Human Development and Global Environmental Change. Chin. Geogr. Sci. 2018, 28, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, W.; Gao, H.; Nie, N. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens. 2018, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Li, Z.; Lu, X.; Yang, Q. Impacts on wetlands of large-scale land-use changes by agricultural development: The small Sanjiang Plain, China. AMBIO J. Hum. Environ. 2004, 33, 306–310. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, K.; Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 2010, 166, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Guo, Z.; Jiang, B.; Lu, F.; Wang, H.; Wang, D.; Zhang, M.; Cui, L. Improving wetland ecosystem health in China. Ecol. Indic. 2020, 113, 106184. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z.; Mao, D.; Li, L.; Liu, M.; Jia, M.; Man, W.; Lu, C. Remote Observation in Habitat Suitability Changes for Waterbirds in the West Songnen Plain, China. Sustainability 2019, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, J.; Madden, M.; Mao, D. China’s Wetlands: Conservation plans and policy impacts. Ambio 2012, 41, 782–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.K.; Van Den Bergh, J.C.; Söderqvist, T.; Barendregt, A.; Van Der Straaten, J.; Maltby, E.; Van Ierland, E.C. Ecological-economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 2000, 35, 7–23. [Google Scholar] [CrossRef]
- Egidarev, E.; Simonov, E.; Darman, Y. Amur-Heilong River Basin: Overview of Wetland Resources. In The Wetland Book; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–15. [Google Scholar]
Category II | Description | TM Image |
---|---|---|
Wetland | Natural wetland covered by vegetation | |
Woodland | Lands dominated by trees and shrubs | |
Grassland | Lands with herbaceous types of cover | |
Water body | Permanent water surface | |
Dry farmland | Lands used for growing non-irrigated cultivation of crops | |
Paddy field | Lands used for growing semiaquatic crops | |
Built-up land | Land covered by buildings and other impervious structures | |
Barren land | Lands has no more than 10% vegetation coverage |
Land Cover Type | 2010 | 2000 | 1990 | ||||||
---|---|---|---|---|---|---|---|---|---|
SAD | ED | intersection | SAD | ED | intersection | SAD | ED | intersection | |
Wetland | 2585 | 2314 | 2146 | 2011 | 1895 | 1752 | 1681 | 1464 | 1433 |
Woodland | 4682 | 4631 | 4527 | 4455 | 4384 | 4264 | 4007 | 3894 | 3629 |
Grassland | 1534 | 1271 | 1174 | 1007 | 982 | 969 | 880 | 761 | 704 |
Water body | 1201 | 1124 | 1100 | 996 | 867 | 798 | 711 | 668 | 621 |
Dry farmland | 3561 | 3482 | 3398 | 2941 | 2803 | 2631 | 2224 | 2007 | 1952 |
Paddy field | 2973 | 2888 | 2765 | 2579 | 2350 | 2158 | 1865 | 1745 | 1588 |
Built-up land | 2546 | 2312 | 2103 | 1888 | 1604 | 1477 | 1158 | 947 | 823 |
Barren land | 980 | 804 | 774 | 704 | 688 | 641 | 598 | 550 | 469 |
Total | 20,062 | 18,826 | 17,987 | 16,581 | 15,573 | 14,690 | 13,124 | 12,036 | 11,219 |
Name | Abbreviation | Equation | Reference |
---|---|---|---|
Nominalized Difference Vegetation Index | NDVI | [36] | |
Enhanced Vegetation Index | EVI | [37] | |
Normalized Difference Water Index | NDWI | [38] | |
Modified Normalized Difference Water Index | mNDWI | [39] | |
Normalized Difference Soil Index | NDSI | [40,41] |
Class | Wetland | Woodland | Grassland | Water Body | Dry Farmland | Paddy Field | Built-Up Land | Others |
---|---|---|---|---|---|---|---|---|
Wetland | 1841 | 98 | 32 | 56 | 49 | 47 | 2 | 5 |
Woodland | 1 | 3790 | 36 | 0 | 73 | 25 | 16 | 9 |
Grassland | 26 | 21 | 985 | 6 | 149 | 0 | 38 | 8 |
Water body | 0 | 2 | 5 | 888 | 3 | 53 | 7 | 1 |
Dry farmland | 18 | 89 | 0 | 2 | 2711 | 37 | 50 | 22 |
Paddy field | 35 | 75 | 0 | 33 | 49 | 2285 | 11 | 10 |
Built-up land | 0 | 0 | 0 | 0 | 11 | 19 | 1692 | 41 |
Others | 10 | 0 | 0 | 5 | 15 | 23 | 77 | 601 |
Wi | 0.08 | 0.43 | 0.12 | 0.02 | 0.27 | 0.05 | 0.02 | 0.01 |
UAi ± Si | 0.86 ± 0.01 | 0.96 ± 0.006 | 0.80 ± 0.02 | 0.93 ± 0.02 | 0.93 ± 0.009 | 0.91 ± 0.01 | 0.96 ± 0.008 | 0.82 ± 0.03 |
PAi ± Si | 0.93 ± 0.001 | 0.96 ± 0.001 | 0.95 ± 0.001 | 0.84 ± 0.000 | 0.91 ± 0.002 | 0.83 ± 0.001 | 0.63 ± 0.001 | 0.64 ± 0.001 |
Overall Accuracy | 0.91 ± 0.005 |
1990 | 2000 | 2010 | 1990–2000 | 2000–2010 | 1990–2010 | |
---|---|---|---|---|---|---|
Wetland | 89,432 | 78,501 | 75,016 | −10,931 | −3485 | −14,416 |
Waterbody | 17,976 | 17,404 | 17,360 | −572 | −44 | −616 |
Woodland | 382,205 | 378,722 | 380,535 | −3483 | 1813 | −1670 |
Grassland | 108,292 | 103,067 | 102,640 | −5226 | −426 | −5652 |
Dry farmland | 242,357 | 254,708 | 244,110 | 12,351 | −10,598 | 1753 |
Paddy field | 25,259 | 32,163 | 44,313 | 6904 | 12,150 | 19,054 |
Built-up land | 19,084 | 19,866 | 21,310 | 783 | 1444 | 2227 |
Others | 5476 | 5649 | 4796 | 173 | −853 | −680 |
Wetland Loss to (km2) | Wetland Gain from (km2) | |||
---|---|---|---|---|
1990–2000 | 2000–2010 | 1990–2000 | 2000–2010 | |
Waterbody | 863 | 1387 | 821 | 1049 |
Woodland | 607 | 450 | 246 | 386 |
Grassland | 293 | 531 | 333 | 265 |
Dry farmland | 8479 | 1867 | 292 | 468 |
Paddy field | 2030 | 1368 | 39 | 61 |
Built-up land | 190 | 115 | 2 | 8 |
Others | 119 | 74 | 41 | 386 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Wang, Y.; Liu, J.; Li, X.; Pan, H.; Jia, M. Tracking Historical Wetland Changes in the China Side of the Amur River Basin Based on Landsat Imagery and Training Samples Migration. Remote Sens. 2021, 13, 2161. https://doi.org/10.3390/rs13112161
Zhu Q, Wang Y, Liu J, Li X, Pan H, Jia M. Tracking Historical Wetland Changes in the China Side of the Amur River Basin Based on Landsat Imagery and Training Samples Migration. Remote Sensing. 2021; 13(11):2161. https://doi.org/10.3390/rs13112161
Chicago/Turabian StyleZhu, Qiande, Yining Wang, Jinxia Liu, Xuechun Li, Hairong Pan, and Mingming Jia. 2021. "Tracking Historical Wetland Changes in the China Side of the Amur River Basin Based on Landsat Imagery and Training Samples Migration" Remote Sensing 13, no. 11: 2161. https://doi.org/10.3390/rs13112161
APA StyleZhu, Q., Wang, Y., Liu, J., Li, X., Pan, H., & Jia, M. (2021). Tracking Historical Wetland Changes in the China Side of the Amur River Basin Based on Landsat Imagery and Training Samples Migration. Remote Sensing, 13(11), 2161. https://doi.org/10.3390/rs13112161