Modeling the Impact of Climate Changes on Crop Yield: Irrigated vs. Non-Irrigated Zones in Mississippi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Statistical Modeling
3. Results
3.1. Trend Analysis
3.2. Regional Crop Modeling for a 10-Year Period
3.3. Local Crop Modeling for Agricultural Districts in Mississippi
3.4. Regional Crop Modeling for the Whole Mississippi State
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. Land-climate interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 12 November 2020).
- Mbow, C.; Rosenzweig, C.L.G.; Barioni, T.G.; Benton, M.; Herrero, M.; Krishnapillai, E.; Liwenga, P.; Pradhan, M.G.; Rive-ra-Ferre, T.; Sapkota, F.N.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 7 June 2021).
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, P.; Butterfield, R. Climate Change and Agriculture in Europe—Assessment of Impacts and Adaptation, Environmental Change Unit; Downing, T., Ed.; University of Oxford: Oxford, UK, 1995; 411p, ISBN 1-874370-09-5. [Google Scholar]
- Gadgil, S.; Rao, P.R.S.; Sridhar, S. Modeling impact of climate variability on rainfed groundnut. Curr. Sci. 1999, 76, 557–569. [Google Scholar]
- Alexandrov, V.; Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 2000, 104, 315–327. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Kukal, M.S.; Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 2018, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, R.K.; Snell, S.E. A Biophysical Model of Corn Yield: Integrating Climatic and Social Determinants. Am. J. Agric. Econ. 1997, 79, 178–190. [Google Scholar] [CrossRef]
- Freckleton, R.; Watkinson, A.; Webb, D.J.; Thomas, T. Yield of sugar beet in relation to weather and nutrients. Agric. For. Meteorol. 1999, 93, 39–51. [Google Scholar] [CrossRef]
- Iizumi, T.; Furuya, J.; Shen, Z.; Kim, W.; Okada, M.; Fujimori, S.; Hasegawa, T.; Nishimori, M. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.M.; et al. Climate Change Impact on Agriculture and Costs of Adaptation; International Food Policy Research Institute: Washington, DC, USA, 2009; 30p, Available online: http://www.fao.org/fileadmin/user_upload/rome2007/docs/Impact_on_Agriculture_and_Costs_of_Adaptation.pdf (accessed on 8 June 2020).
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 2020, 702, 134913. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Beal, D.J. SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria. 2007. Available online: https://www.semanticscholar.org/paper/SAS-Code-to-Select-the-Best-Multiple-Linear-Model-Beal/8bdacf48dde2d77f6aa676ed79c95c6c1ad701e5 (accessed on 7 June 2021).
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression. J. R. Stat. Soc. Ser. D Stat. 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002; p. 284. ISBN 978-0471496168. [Google Scholar]
- Meng, Q.; Cieszewski, C.J.; Madden, M.; Borders, B. A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images. For. Ecol. Manag. 2007, 244, 93–101. [Google Scholar] [CrossRef]
- Sawa, T. Information Criteria for Discriminating among Alternative Regression Models. Econometrica 1978, 46, 1273–1291. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Q. Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment relationships. Fish. Res. 2006, 77, 220–225. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Climate and management contributions to recent trends in US agricultural yields. Science 2003, 299, 1032. [Google Scholar] [CrossRef]
- Leng, G.; Zhang, X.; Huang, M.; Asrar, G.R.; Leung, L.R. The Role of Climate Covariability on Crop Yields in the Conterminous United States. Sci. Rep. 2016, 6, 33160. [Google Scholar] [CrossRef]
- Cai, X.; Wang, D.; Laurent, R. Impact of Climate Change on Crop Yield: A Case Study of Rainfed Corn in Central Illinois. J. Appl. Meteorol. Clim. 2009, 48, 1868–1881. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Irrigation-limited yield gaps: Trends and variability in the United States post-1950. Environ. Res. Commun. 2019, 1, 061005. [Google Scholar] [CrossRef]
- Mavromatis, T. Crop–climate relationships of cereals in Greece and the impacts of recent climate trends. Theor. Appl. Clim. 2015, 120, 417–432. [Google Scholar] [CrossRef]
- Innes, P.; Tan, D.; Van Ogtrop, F.; Amthor, J. Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agric. For. Meteorol. 2015, 208, 95–107. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Ruane, A.C.; Rosenzweig, C.; Asseng, S.; Boote, K.J.; Elliott, J.; Ewert, F.; Jones, J.W.; Martre, P.; McDermid, S.P.; Müller, C.; et al. An AgMIP framework for improved agricultural representation in integrated assessment models. Environ. Res. Lett. 2017, 12, 125003. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Global Climate Projections; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://www.fws.gov/southwest/es/documents/R2ES/LitCited/LPC_2012/Meehl_et_al_2007.pdf (accessed on 8 June 2020).
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
Model Name | Intercept | Model Slope for Different Parameters | Adjusted R-Square | BIC | AIC | |||
---|---|---|---|---|---|---|---|---|
Tmax | Tmean | Tmin | Precipitation | |||||
Y[Tmax,Tmin,Precipitation]92i | 264.87 | −6.36 | 5.04 | −4.80 | 0.65 | 120.2 | 117.7 | |
Y[Tmax,Tmean]02i | 114.50 | −8.40 | 8.43 | . | . | 0.37 | 318.2 | 316.1 |
Y[Tmax,Tmin]12i | −82.04 | −2.04 | . | 4.57 | . | 0.12 | 456.1 | 453.9 |
Y[Tmax,Tmin]19i | 143.52 | −4.80 | . | 4.89 | . | 0.29 | 357.5 | 355.3 |
Y[Tmax,Tmean,Tmin,Precipitation]92ni | 68.50 | −4.54 | 6.51 | −2.23 | -0.42 | 0.20 | 2737.0 | 2734.9 |
Y[Tmax,Tmean,Precipitation]02ni | 119.74 | −6.20 | 5.82 | . | 0.63 | 0.39 | 1128.9 | 1126.8 |
Y[Tmean,Tmin,Precipitation]12ni | −5.69 | . | −4.34 | 5.67 | 0.95 | 0.28 | 1004.3 | 1002.1 |
Y[Tmax,Tmean,Tmin,Precipitation]19ni | 75.79 | −4.34 | 2.97 | 1.70 | 1.20 | 0.17 | 728.8 | 726.5 |
Model Name | Intercept | Model Slope for Different Parameters | Adjusted R-Square | BIC | AIC | ||||
---|---|---|---|---|---|---|---|---|---|
Tmax | Tmean | Tmin | Precipitation | ||||||
Y[Tmax,Tmin]AG10i | 20.51 | −4.64 | . | 6.38 | . | 0.28 | 886.9 | 884.8 | |
Y[Tmax,Tmean,Tmin]AG40i | −175.04 | −4.88 | 3.55 | 5.63 | . | 0.26 | 1053.4 | 1051.2 | |
Y[Tmin,Precipitation]AG50i | −210.18 | . | . | 3.61 | 3.43 | 0.13 | 225.8 | 223.3 | |
Y[Tmax,Tmean,Precipitation]AG10ni | 116.91 | −7.17 | 7.10 | . | −2.72 | 0.73 | 89.1 | 86.1 | |
Y[Tmax,Tmean,Precipitation]AG20ni | 8.49 | −4.61 | 5.46 | . | 1.49 | 0.20 | 1310.0 | 1307.9 | |
Y[Tmax,Tmean]AG30ni | 40.42 | −4.17 | 4.63 | . | . | 0.15 | 1218.0 | 1216.0 | |
Y[Tmax,Tmean,Tmin]AG40ni | 72.87 | −4.72 | 7.42 | −3.10 | . | 0.09 | 432.7 | 430.4 | |
Y[Tmax,Tmean,Precipitation]AG50ni | −130.17 | −3.26 | 5.72 | . | 2.41 | 0.22 | 1114.0 | 1111.8 | |
Y[Tmax,Tmean,Precipitation]AG60ni | 16.36 | −10.11 | 11.89 | . | −1.71 | 0.30 | 964.3 | 962.1 | |
Y[Tmax,Tmean,Precipitation]AG70ni | −35.22 | −9.86 | 12.25 | . | −1.82 | 0.36 | 799.6 | 797.4 | |
Y[Tmax,Tmin,Precipitation]AG80ni | 16.53 | −3.88 | . | 5.57 | −2.26 | 0.29 | 580.7 | 578.4 | |
Y[Tmax,Tmean]AG90ni | 124.33 | −1.48 | 0.35 | . | . | 0.08 | 650.2 | 648.1 |
Model Name | Intercept | Model Slope for Different Parameters | Adjusted R-Square | BIC | AIC | |||
---|---|---|---|---|---|---|---|---|
Tmax | Tmean | Tmin | Precipitation | |||||
Y[Tmax,Tmean,Tmin,Precipitation]MSi | −144.86 | −3.93 | 2.96 | 4.48 | 1.48 | 0.24 | 2218.3 | 2216.2 |
Y[Tmax,Tmean]MSni | 53.55 | −4.47 | 4.77 | . | . | 0.14 | 7486.6 | 7484.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shammi, S.A.; Meng, Q. Modeling the Impact of Climate Changes on Crop Yield: Irrigated vs. Non-Irrigated Zones in Mississippi. Remote Sens. 2021, 13, 2249. https://doi.org/10.3390/rs13122249
Shammi SA, Meng Q. Modeling the Impact of Climate Changes on Crop Yield: Irrigated vs. Non-Irrigated Zones in Mississippi. Remote Sensing. 2021; 13(12):2249. https://doi.org/10.3390/rs13122249
Chicago/Turabian StyleShammi, Sadia Alam, and Qingmin Meng. 2021. "Modeling the Impact of Climate Changes on Crop Yield: Irrigated vs. Non-Irrigated Zones in Mississippi" Remote Sensing 13, no. 12: 2249. https://doi.org/10.3390/rs13122249
APA StyleShammi, S. A., & Meng, Q. (2021). Modeling the Impact of Climate Changes on Crop Yield: Irrigated vs. Non-Irrigated Zones in Mississippi. Remote Sensing, 13(12), 2249. https://doi.org/10.3390/rs13122249