High-Resolution Mapping of Aerosol Optical Depth and Ground Aerosol Coefficients for Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Original Satellite-Derived AOD Data and AERONET Data
2.3. Covariates
2.3.1. Coarse-Resolution Reanalysis Data
2.3.2. High-Resolution Meteorological Data by Spatiotemporal Interpolation
2.3.3. Geographic Zone
2.3.4. Other Spatial and/or Temporal Variables
2.4. Methods
2.4.1. The Preprocessing of Satellite-Derived AOD and Covariates
2.4.2. Adaptive Imputation Modelling
2.4.3. Training and Evaluation
2.4.4. Conversion of AOD into Ground Aerosol Coefficient
3. Results and Discussion
3.1. Descriptive Statistics of AOD and Fusion of High-Resolution Meteorology
3.2. Reliability of Imputed AOD and Simulated GAC
3.3. Spatiotemporal Distributions of AOD and GAC for Mainland China
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASA. Aerosol Optimal Depth. 2017. Available online: https://aeronet.gsfc.nasa.gov/new_web/Documents/Aerosol_Optical_Depth.pdf (accessed on 21 May 2019).
- Levy, H.; Horowitz, L.W.; Schwarzkopf, M.D.; Ming, Y.; Golaz, J.C.; Naik, V.; Ramaswamy, V. The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos. 2013, 118, 4521–4532. [Google Scholar] [CrossRef]
- Ocko, I.B.; Ramaswamy, V.; Ginoux, P.; Ming, Y.; Horowitz, L.W. Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.X.; Xu, X.H.; Chu, M.; Guo, Y.; Wang, J.H. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [CrossRef]
- Zhang, B.; Liang, S.W.; Zhao, J.Z.; Qian, Z.M.; Bassig, B.A.; Yang, R.; Zhang, Y.M.; Hu, K.; Xu, S.Q.; Zheng, T.Z.; et al. Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J. Expo. Sci. Environ. Epid. 2016, 26, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Frohlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.L.; Li, Y.G.; Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 981. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.L.; Gali, N.K.; Sun, L.; Duan, Y.S.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Fan, X.H.; Xia, X.G.; Chen, H.B. Intercomparison of Multiple Satellite Aerosol Products against AERONET over the North China Plain. Atmosphere 2019, 10, 480. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Joseph, J.H. Determination of surface albedos and aerosol extinction characteristics from satellite imagery. J. Geophys. Res. 1982, 87, 1287–1299. [Google Scholar] [CrossRef]
- Tanre, D.; Kaufman, Y.J.; Herman, M.; Mattoo, S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. Atmos. 1997, 102, 16971–16988. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.J.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- Tanre, D.; Breon, F.M.; Deuze, J.L.; Dubovik, O.; Ducos, F.; Francois, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef]
- Lanzaco, B.L.; Olcese, L.E.; Palancar, G.G.; Toselli, B.M. An Improved Aerosol Optical Depth Map Based on Machine-Learning and MODIS Data: Development and Application in South America. Aerosol Air Qual. Res. 2017, 17, 1623–1636. [Google Scholar] [CrossRef]
- Wei, X.L.; Chang, N.B.; Bai, K.X.; Gao, W. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1640–1725. [Google Scholar] [CrossRef]
- Singh, M.K.; Venkatachalam, P.; Gautam, R. Geostatistical Methods for Filling Gaps in Level-3 Monthly-Mean Aerosol Optical Depth Data from Multi-Angle Imaging SpectroRadiometer. Aerosol Air Qual. Res. 2017, 17, 1963–1974. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A Geographically and TemporallyWeighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y. MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Data User’s Guide. 2018. Available online: https://modis-land.gsfc.nasa.gov/pdf/MCD19_UserGuide_final_Feb-6-2018.pdf (accessed on 20 February 2019).
- Zhang, J.L.; Reid, J.S. An analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Li, L.F. Optimal Inversion of Conversion Parameters from Satellite AOD to Ground Aerosol Extinction Coefficient Using Automatic Differentiation. Remote Sens. 2020, 12, 492. [Google Scholar] [CrossRef]
- Wang, Z.F.; Chen, L.F.; Tao, J.H.; Zhang, Y.; Su, L. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sens. Environ. 2010, 114, 50–63. [Google Scholar] [CrossRef]
- Kloog, I.; Coull, B.A.; Zanobetti, A.; Koutrakis, P.; Schwartz, J.D. Acute and chronic effects of particles on hospital admissions in New-England. PLoS ONE 2012, 7, e34664. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Chen, L.F.; Tao, J.H.; Han, D.; Wang, Z.T.; Su, L.; Fan, M.; Yu, C. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter. Sci. China Earth Sci. 2012, 55, 1545–1553. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Levy, R.C.; da Silva, A.M.; Krzyzanowski, M.; Chubarova, N.E.; Semutnikova, E.; Cohen, A.J. Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmos. Environ. 2011, 45, 6225–6232. [Google Scholar] [CrossRef]
- Lv, B.; Hu, Y.; Chang, H.H.; Russell, A.G.; Bai, Y. Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China. Environ. Sci. Technol. 2016, 50, 4752–4759. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef]
- Li, L.; Fang, Y.; Wu, J.; Wang, J.; Y., G. Encoder-Decoder Full Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation. IEEE Trans. Neural Netw. Learn. Syst. 2020, in press. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 1480–1489. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv preprint 2017, arXiv:1706.03762. [Google Scholar]
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term memory networks for relation classification. In Proceedings of the 54th annual meeting of the association for computational linguistics, Berlin, Germany, 7–12 August 2016; Association for Computational Linguistics: Stroudsburg, PA, USA; pp. 207–212. [Google Scholar]
- Li, Y.; Zeng, J.B.; Shan, S.G.; Chen, X.L. Occlusion Aware Facial Expression Recognition Using CNN with Attention Mechanism. IEEE Trans. Image 2019, 28, 2439–2450. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- National Bureau of Statistics of China. Total Population. Available online: https://en.wikipedia.org/wiki/National_Bureau_of_Statistics_of_China (accessed on 21 March 2020).
- Bai, Z.P.; Han, J.B.; Azzi, M. Insights into measurements of ambient air PM2.5 in China. Trends Environ. Anal. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Pui, D.Y.H.; Chen, S.C.; Zuo, Z.L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Waghorn, T. Fighting Desertification. Available online: https://www.forbes.com/sites/terrywaghorn/2011/03/07/fighting-desertification/?sh=4dec8b795fd7 (accessed on 21 January 2020).
- Liu, N.; Zou, B.; Feng, H.H.; Wang, W.; Tang, Y.Q.; Liang, Y. Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China. Atmos. Chem. Phys. 2019, 19, 8243–8268. [Google Scholar] [CrossRef]
- NASA. MODIS Grids. Available online: https://modis-land.gsfc.nasa.gov/MODLAND_grid.html (accessed on 1 June 2021).
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- NASA. MODIS Atmosphere. Available online: https://modis-images.gsfc.nasa.gov/products.html (accessed on 3 September 2020).
- Oreopoulos, L.; Cho, N.; Lee, D.; Kato, S.; Huffman, G. An examination of the nature of global MODIS cloud regimes. JGR Atmos. 2014, 119, 8362–8383. [Google Scholar] [CrossRef]
- Li, L.F.; Franklin, M.; Girguis, M.; Lurmann, F.; Wu, J.; Pavlovic, N.; Breton, C.; Gilliland, F.; Habre, R. Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling. Remote Sens. Environ. 2020, 237. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Li, L. Estimation of high-precision high-resolution meteorological factors based on machine learning. J. Geo-Inf. Sci. 2019, 21, 799–813. [Google Scholar]
- Li, L. Geographically Weighted Machine Learning and Downscaling for High-Resolution Spatiotemporal Estimations of Wind Speed. Remote Sens. 2019, 11, 1378. [Google Scholar] [CrossRef]
- Wikipedia. One-Hot. Available online: https://en.wikipedia.org/wiki/One-hot (accessed on 20 June 2019).
- Press, H.W.; Teukolsky, A.S.; Vetterling, T.W.; Flannery, P.B. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1992; pp. 123–128. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K. Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprints 2018, arXiv:1810.04805. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67, 768. [Google Scholar] [CrossRef]
- Baydin, G.A.; Pearlmutter, B.; Radul, A.A.; Siskind, J. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 2018, 18, 1–43. [Google Scholar]
- Malone, P.B.; McBratney, B.A.; Minasny, B.; Wheeler, I. A general method for downscaling earth resource information. Comput. Geosci. 2012, 41, 119–125. [Google Scholar] [CrossRef]
- Keshari, R.; Ghosh, S.; Chhabra, S.; Vatsa, M.; Singh, R. Unravelling Small Sample Size Problems in the Deep Learning World. In Proceedings of the 2020 IEEE Sixth International Conference on Multimedia Big Data (Bigmm 2020), New Delhi, India, 24–26 September 2020; pp. 134–143. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Calbo, J. Aerosol Effects on the Cloud Optical Depth Retrieval from Atmospheric Transmittance. AIP. Conf. Proc. 2013, 1531, 556–559. [Google Scholar] [CrossRef]
- Yuan, T.L.; Li, Z.Q.; Zhang, R.Y.; Fan, J.W. Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Li, J.; Carlson, E.B.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Wang, H.F.; Li, Z.Q.; Lv, Y.; Xu, H.; Li, K.T.; Li, D.H.; Hou, W.Z.; Zheng, F.X.; Wei, Y.Y.; Ge, B.Y. Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing. Environ. Pollut. 2019, 252, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Su, T.N.; Li, Z.Q.; Kahn, R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors. Atmos. Chem. Phys. 2018, 18, 15921–15935. [Google Scholar] [CrossRef]
- Liu, Z.; Mortier, A.; Li, Z.Q.; Hou, W.Z.; Goloub, P.; Lv, Y.; Chen, X.F.; Li, D.H.; Li, K.T.; Xie, Y.S. Improving Daytime Planetary Boundary Layer Height Determination from CALIOP: Validation Based on Ground-Based Lidar Station. Adv. Meteorol. 2017, 2017. [Google Scholar] [CrossRef]
- Jordan, N.S.; Hoff, R.M.; Bacmeister, J.T. Validation of Goddard Earth Observing System-version 5 MERRA planetary boundary layer heights using CALIPSO. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Molod, A.; Salmun, H.; Collow, A. The Use of MERRA-2 Near Surface Meteorology to Understand the Behavior of Planetary Boundary Layer heights Derived from Wind Profiler Data Over the US Great Plains. In Proceedings of the American Geophysical Union, Fall Meeting 2017, New Orleans, LA, USA, 15–17 December 2017. [Google Scholar]
- Yang, Q.Q.; Yuan, Q.Q.; Yue, L.W.; Li, T.W.; Shen, H.F.; Zhang, L.P. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environ. Pollut. 2019, 248, 526–535. [Google Scholar] [CrossRef]
- Chugh, N. Three Reasons Why You Should Bet On Guangzhou as the Next Big Global City. Available online: https://www.forbes.com/sites/nishthachugh/2017/06/15/three-reasons-why-you-should-bet-on-guangzhou-as-next-big-global-city/?sh=6430498c2dc9 (accessed on 7 January 2021).
- Baidu. Beijing Clean Air Action Plan for 2013–2017 (in Chinese). Available online: https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E5%B8%822013-2017%E5%B9%B4%E6%B8%85%E6%B4%81%E7%A9%BA%E6%B0%94%E8%A1%8C%E5%8A%A8%E8%AE%A1%E5%88%92/10348277?fr=aladdin (accessed on 1 February 2021).
- Huo, K.; Zhang, Q.; Tong, Z.; Cheng, J.; Liu, Y. Ways and Health Benefits of Improving Air Quality in China in the Medium and Long Term; Qinghua University: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of People’s Republic of China. The National Air Quality Forecast Consultation in Mid-to-Early January 2019 (in Chinese). 2018. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201812/t20181230_688171.html (accessed on 10 March 2019).
- Li, L.; Wu, J. A Complete Aerosol Optical Depth Dataset with High Spatiotemporal Resolution for Mainland China, 1st ed.; IGSNRR, Ed.; Harvard Dataverse: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Li, L.; Wu, J. Mapping of Ground Aerosol Coefficient with High Spatiotemporal Resolution for Mainland China; Harvard Dataverse: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
2015–2018 | Sprin | Summer | Autumn | Winter | |
---|---|---|---|---|---|
Mean AOD | 0.22 | 0.25 | 0.26 | 0.22 | 0.19 |
Standard deviation of AOD | 0.16 | 0.19 | 0.18 | 0.16 | 0.15 |
Mean missing proportion | 63% | 64% | 67% | 67% | 53% |
Standard deviation of missing proportion | 18% | 23% | 18% | 21% | 22% |
Northeast China | North China | East China | Central China | South China | Northwest China | Southwest China | |
---|---|---|---|---|---|---|---|
Mean AOD | 0.19 | 0.30 | 0.45 | 0.47 | 0.39 | 0.18 | 0.13 |
Standard deviation of AOD | 0.06 | 0.14 | 0.12 | 0.11 | 0.06 | 0.11 | 0.16 |
Mean missing proportion | 66% | 50% | 74% | 76% | 87% | 52% | 70% |
Standard deviation of missing proportion | 13% | 7% | 11% | 9% | 4% | 17% | 17% |
Type | Model | Test R2 | Test RMSE | Modelling Way |
---|---|---|---|---|
Air pressure | Generalized additive model | 0.99 | 5.14 hPa | One model |
Air temperature | Full residual deep network | 0.92 | 3.42 °C | One model |
Relative humidity | Full residual deep network | 0.88 | 0.11% | One model |
Wind speed | Full residual deep network | 0.79 | 0.56 m/s | Bagging of 100 base models |
Type | Metrics | Mean | Median | Minimum | Maximum | Standard Deviation | IQR |
---|---|---|---|---|---|---|---|
Training | R2 | 0.90 | 0.91 | 0.75 | 0.97 | 0.04 | 0.05 |
RMSE | 0.08 | 0.07 | 0.03 | 0.33 | 0.03 | 0.03 | |
Testing | R2 | 0.90 | 0.91 | 0.75 | 0.97 | 0.04 | 0.05 |
RMSE | 0.08 | 0.07 | 0.03 | 0.32 | 0.03 | 0.03 |
Mainland China | Northeast China | North China | East China | Central China | South China | Northwest China | Southwest China | |
---|---|---|---|---|---|---|---|---|
Mean GAC | 0.00052 | 0.00052 | 0.00075 | 0.00097 | 0.00113 | 0.00072 | 0.00038 | 0.00032 |
Standard deviation of GAC | 0.00021 | 0.00042 | 0.00061 | 0.0005 | 0.00064 | 0.00038 | 0.00021 | 0.00012 |
Spring | 0.00051 | 0.00045 | 0.00059 | 0.0010 | 0.0011 | 0.00091 | 0.00038 | 0.00033 |
Summer | 0.00037 | 0.00039 | 0.00065 | 0.00076 | 0.00077 | 0.00053 | 0.00023 | 0.00027 |
Autumn | 0.00046 | 0.00045 | 0.00075 | 0.00082 | 0.0010 | 0.00062 | 0.00034 | 0.00030 |
Winter | 0.00071 | 0.00080 | 0.0010 | 0.0013 | 0.0016 | 0.00080 | 0.00058 | 0.00036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L. High-Resolution Mapping of Aerosol Optical Depth and Ground Aerosol Coefficients for Mainland China. Remote Sens. 2021, 13, 2324. https://doi.org/10.3390/rs13122324
Li L. High-Resolution Mapping of Aerosol Optical Depth and Ground Aerosol Coefficients for Mainland China. Remote Sensing. 2021; 13(12):2324. https://doi.org/10.3390/rs13122324
Chicago/Turabian StyleLi, Lianfa. 2021. "High-Resolution Mapping of Aerosol Optical Depth and Ground Aerosol Coefficients for Mainland China" Remote Sensing 13, no. 12: 2324. https://doi.org/10.3390/rs13122324
APA StyleLi, L. (2021). High-Resolution Mapping of Aerosol Optical Depth and Ground Aerosol Coefficients for Mainland China. Remote Sensing, 13(12), 2324. https://doi.org/10.3390/rs13122324