Quantitative Analysis of Forest Fires in Southeastern Australia Using SAR Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Radar Data
3.2. Reference Data
- (I)
- Unburnt class: The prescribed burn appears to have had little effect on these areas.
- (II)
- Low–medium severity class: Areas where the fires affect only understory vegetation while the crown remains largely unaffected, as well as areas where convective heat from fire scorched the crown but the canopy structure was maintained (most of the leaves and main branches). Due to the difficulty in identifying subtle fire effects through aerial image photointerpretation and the sensitivity of the C-band to the largest structural elements of vegetation, severity levels from low to moderate were considered as a single class (mainly stems and branches). Hence, the C band’s ability to distinguish moderately intense thresholds where large canopy elements remain relatively unchanged may be affected.
- (III)
- High severity: The crown canopy is entirely absent, and the main branches are partly burned or missing. There are still several fallen stems.
3.3. Ancillary Data
3.4. Analysis and Modeling of Prescribed Burns
3.4.1. Standard Model (STAND)
3.4.2. Normalized Model (NORM)
3.4.3. Model Validation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Amiro, B.D.; Barger, N.N.; French, N.H.F.; Goetz, S.J.; Grosse, G.; Harmon, M.E.; Hicke, J.A.; Liu, S.; Masek, J.G. Impacts of disturbance on the terrestrial carbon budget of North America. J. Geophys. Res. Biogeosci. 2013, 118, 303–316. [Google Scholar] [CrossRef]
- McCaw, W.L. Managing forest fuels using prescribed fire—A perspective from southern Australia. For. Ecol. Manag. 2013, 294, 217–224. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariq, A.; Shu, H.; Siddiqui, S.; Munir, I.; Sharifi, A.; Li, Q.; Lu, L. Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. J. For. Res. 2021, 13, 12. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Saddiqui, S.; Mousa, B.G.; Munir, I.; Nasri, A.; Waqas, H.; Baqa, M.F.; Lu, L. Forest fire Monitoring using spatial-statistical and Geo-spatial analysis of factors determining Forest fire in Margalla Hills, Islamabad, Pakistan. Geomat. Nat. Hazards Risk 2021, 12, 1212–1233. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildl. Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.M.; Sadler, R.J.; Wittkuhn, R.S.; McCaw, L.; Grierson, P.F. Long-term impacts of prescribed burning on regional extent and incidence of wildfires—Evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Gill, A.M.; McCarthy, M.A. Intervals between prescribed fires in Australia: What intrinsic variation should apply? Biol. Conserv. 1998, 85, 161–169. [Google Scholar] [CrossRef]
- Andersen, A.N.; Cook, G.D.; Corbett, L.K.; Douglas, M.M.; Eager, R.W.; Russell-Smith, J.; Setterfield, S.A.; Williams, R.J.; Woinarski, J.C.Z. Fire frequency and biodiversity conservation in Australian tropical savannas: Implications from the Kapalga fire experiment. Austral Ecol. 2005, 30, 155–167. [Google Scholar] [CrossRef]
- Youngblood, A.; Wright, C.S.; Ottmar, R.D.; McIver, J.D. Changes in fuelbed characteristics and resulting fire potentials after fuel reduction treatments in dry forests of the Blue Mountains, northeastern Oregon. For. Ecol. Manag. 2008, 255, 3151–3169. [Google Scholar] [CrossRef]
- Hollis, J.J.; Anderson, W.R.; McCaw, W.L.; Cruz, M.G.; Burrows, N.D.; Ward, B.; Tolhurst, K.G.; Gould, J.S. The effect of fireline intensity on woody fuel consumption in southern Australian eucalypt forest fires. Aust. For. 2011, 74, 81–96. [Google Scholar] [CrossRef]
- Burrows, N.D.; Wardell-Johnson, G.; Ward, B. Post-fire juvenile period of plants in south-west Australia forests and implications for fire management. J. R. Soc. West. Aust. 2008, 91, 163–174. [Google Scholar]
- Loschiavo, J.; Cirulis, B.; Zuo, Y.; Hradsky, B.A.; Di Stefano, J. Mapping prescribed fire severity in south-east Australian eucalypt forests using modelling and satellite imagery: A case study. Int. J. Wildl. Fire 2017, 26, 491. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems. In Advances in Ecological Research: Classic Papers; Academic Press: Cambridge, MA, USA, 2004; Volume 34, pp. 59–234. ISBN 0065-2504. [Google Scholar]
- Bennett, L.T.; Aponte, C.; Tolhurst, K.G.; Löw, M.; Baker, T.G. Decreases in standing tree-based carbon stocks associated with repeated prescribed fires in a temperate mixed-species eucalypt forest. For. Ecol. Manag. 2013, 306, 243–255. [Google Scholar] [CrossRef]
- Aponte, C.; Tolhurst, K.G.; Bennett, L.T. Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest. Ecol. Appl. 2014, 24, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116. [Google Scholar] [CrossRef]
- Won, M.; Kim, K.; Lee, S. Analysis of Burn Severity in Large-fire Area Using SPOT5 Images and Field Survey Data. Korean J. Agric. For. Meteorol. 2014, 16, 114–124. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl. Fire 2006, 15, 319. [Google Scholar] [CrossRef]
- Khriplovich, I.B.; Pomeransky, A.A. Equations of Motion of Spinning Relativistic Particle in Electromagnetic and Gravitational Fields. Ecol. Appl. 1998, 18, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2013, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Riaño, D.; Danson, F.M.; Martin, P. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Syphard, A.D.; Keeley, J.E.; Brennan, T.J. Comparing the role of fuel breaks across southern California national forests. For. Ecol. Manag. 2011, 261, 2038–2048. [Google Scholar] [CrossRef]
- Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of three MODIS-derived vegetation index time series for dryland vegetation dynamics monitoring. Remote Sens. 2015, 7, 7597–7614. [Google Scholar] [CrossRef] [Green Version]
- Stylianidis, E.; Akca, D.; Poli, D.; Hofer, M.; Gruen, A.; Sanchez Martin, V.; Smagas, K.; Walli, A.; Altan, O.; Jimeno, E.; et al. FORSAT: A 3D forest monitoring system for cover mapping and volumetric 3D change detection. Int. J. Digit. Earth 2020, 13, 854–885. [Google Scholar] [CrossRef]
- Engelbrecht, J.; Theron, A.; Vhengani, L.; Kemp, J. A simple normalized difference approach to burnt area mapping using multi-polarisation C-Band SAR. Remote Sens. 2017, 9, 764. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.A.; Kennedy, R.; Aponte, C. Fire severity estimation from space: A comparison of active and passive sensors and their synergy for different forest types. Int. J. Wildl. Fire 2015, 24, 1062–1075. [Google Scholar] [CrossRef]
- Zhang, P.; Nascetti, A.; Ban, Y.; Gong, M. An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data. ISPRS J. Photogramm. Remote Sens. 2019, 158, 50–62. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests. Bioscience 2004, 54, 661. [Google Scholar] [CrossRef]
- Chou, Y.H.; Minnich, R.A.; Chase, R.A. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ. Manag. 1993, 17, 129–140. [Google Scholar] [CrossRef]
- Whittaker, J.; Mercer, D. The Victorian bushfires of 2002-03 and the politics of blame: A discourse analysis. Aust. Geogr. 2004, 35, 259–287. [Google Scholar] [CrossRef]
- Bell, D.T.; Plummer, J.A.; Taylor, S.K. Seed germination ecology in southwestern Western Australia. Bot. Rev. 1993, 59, 24–73. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Q.; Yu, W. An improved Normalized Cross Correlation algorithm for SAR image registration. In 2012 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Munich, Germany, 2012; pp. 2086–2089. [Google Scholar]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Automated and Precise Image Registration Procedures. In Proceedings of the Analysis of Multi-Temporal Remote Sensing Images, Trento, Italy, 13–14 September 2001; World Scientific: Singapore, 2002; Volume 2, pp. 37–49. [Google Scholar]
- Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Kalogirou, V.; Ferrazzoli, P.; Della Vecchia, A.; Foumelis, M. On the SAR Backscatter of Burned Forests: A Model-Based Study in C-Band, Over Burned Pine Canopies. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6205–6215. [Google Scholar] [CrossRef]
- Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Geocarto Int. 1987, 2, 65. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Bourgeau-Chavez, L.L.; Johnstone, J.F. Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery—Implications for post-fire tree recruitment. Remote Sens. Environ. 2007, 108, 42–58. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
SAR Acquisition Dates | Timing | Mission Identifier | Mode/Beam | Product Type | Polarization | Cumulative Precipitations (mm) | |||
---|---|---|---|---|---|---|---|---|---|
Point Hicks | Genoa | Mallaooota | Gabo Island Lighthouse | ||||||
Fire occurrence data | 29 November 2019 | ||||||||
Pre-fire | 06 October 2019 | S1A | IW | SLC | VV/VH | 33 a | 16.3 a | 38.5 a | 36.9 a |
Post-fire | 22 February 2020 | S1A | IW | SLC | VV/VH | 0 b | 4.0 b | 11.3 b | 28.5 b |
Post-fire tree regrowth | 18 October 2020 | S1B | IW | SLC | VV/VH | 20.8 a | 21.8 a | 9.3 a | 26.8 a |
Environmental Condition | Polarization | Model | OA (%) | Kc | Omission Error (%) | Commission Error (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Low Severity | Low–Medium Severity | High Severity | Low Severity | Low–Medium Severity | High Severity | |||||
Wet | VV | STAND | 70.0 | 0.55 | 18.8 | 46.0 | 19.1 | 13.3 | 33.3 | 43.3 |
NORM | 76.6 | 0.69 | 7.2 | 32.5 | 33.6 | 8.2 | 35.4 | 36.5 | ||
VH | STAND | 51.2 | 0.26 | 8.3 | 50.8 | 54.6 | 35.9 | 92.5 | 28.9 | |
NORM | 52.6 | 0.28 | 9.3 | 52.9 | 56.5 | 36.7 | 85.9 | 30.8 | ||
NDBI | STAND | 65.5 | 0.48 | 8.3 | 53.2 | 16.9 | 24.5 | 36.8 | 51.6 | |
NORM | 60.3 | 0.50 | 9.6 | 52.6 | 17.8 | 25.9 | 23.3 | 36.6 | ||
Dry | VV | STAND | 61.1 | 0.42 | 9.6 | 55.3 | 24.0 | 36.7 | 43.3 | 36.7 |
NORM | 40.0 | 0.23 | 62.5 | 78.6 | 50.0 | 50.0 | 90.0 | 40.0 | ||
VH | STAND | 82.3 | 0.78 | 6.5 | 35.9 | 33.9 | 25.6 | 42.8 | 46.6 | |
NORM | 77.2 | 0.74 | 27.3 | 40.7 | 16.7 | 20.0 | 46.7 | 16.7 | ||
NDBI | STAND | 68.9 | 0.53 | 20.6 | 47.4 | 16.7 | 10.0 | 33.3 | 50.0 | |
NORM | 51.1 | 0.27 | 44.2 | 52.0 | 54.6 | 20.0 | 60.0 | 66.7 | ||
Mean | VV | STAND | 60.0 | 0.40 | 30.2 | 60.0 | 36.4 | 0.30 | 66.7 | 53.3 |
NORM | 58.9 | 0.38 | 34.9 | 48.2 | 45.0 | 6.7 | 53.3 | 63.3 | ||
VH | STAND | 44.4 | 0.21 | 46.7 | 66.7 | 63.6 | 20.0 | 86.7 | 60.0 | |
NORM | 74.4 | 0.62 | 25.7 | 36.0 | 16.7 | 13.3 | 46.7 | 16.7 | ||
NDBI | STAND | 66.7 | 0.50 | 15.6 | 50.0 | 34.6 | 10.0 | 46.7 | 43.3 | |
NORM | 50.0 | 0.25 | 7.4 | 50.0 | 52.3 | 33.3 | 86.7 | 30.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, A.; Shu, H.; Li, Q.; Altan, O.; Khan, M.R.; Baqa, M.F.; Lu, L. Quantitative Analysis of Forest Fires in Southeastern Australia Using SAR Data. Remote Sens. 2021, 13, 2386. https://doi.org/10.3390/rs13122386
Tariq A, Shu H, Li Q, Altan O, Khan MR, Baqa MF, Lu L. Quantitative Analysis of Forest Fires in Southeastern Australia Using SAR Data. Remote Sensing. 2021; 13(12):2386. https://doi.org/10.3390/rs13122386
Chicago/Turabian StyleTariq, Aqil, Hong Shu, Qingting Li, Orhan Altan, Mobushir Riaz Khan, Muhammad Fahad Baqa, and Linlin Lu. 2021. "Quantitative Analysis of Forest Fires in Southeastern Australia Using SAR Data" Remote Sensing 13, no. 12: 2386. https://doi.org/10.3390/rs13122386
APA StyleTariq, A., Shu, H., Li, Q., Altan, O., Khan, M. R., Baqa, M. F., & Lu, L. (2021). Quantitative Analysis of Forest Fires in Southeastern Australia Using SAR Data. Remote Sensing, 13(12), 2386. https://doi.org/10.3390/rs13122386