Prototype Calibration with Feature Generation for Few-Shot Remote Sensing Image Scene Classification
Abstract
:1. Introduction
- A prototype calibration with a feature-generating model is proposed for few-shot remote sensing image scene classification, which is able to make full use of prior knowledge to expand the support set and modify prototype of each category. It enhances the expression ability of prototype features, which can overcome issues of intraclass variances and interclass similarity in remote-sensing images.
- Self-attention layers are developed to enhance target information, which can reduce the influence of irrelevant information. It is developed to solve the problem of high similarities of background between categories in remote sensing images.
- Experimental results on two public remote sensing image scene classification datasets demonstrate the efficacy of our proposed model, which outperforms other state-of-the-art few-shot classification methods.
2. Related Works
2.1. Few-Shot Learning
2.2. Remote Sensing Image Scene Classification
3. Methodology
3.1. Problem Formulation
3.2. Pre-Training of Feature Encoder
3.2.1. Pre-Training with Generalizing Loss
3.2.2. Fine Tuning with Sample Shuffle
3.3. Self-Attention Layers
3.3.1. Self-Attention
3.3.2. Residual Self-Attention
3.4. Prototype Calibration with Feature Generation
3.4.1. Feature Generation
3.4.2. Prototype Calibration
4. Results and Discussions
4.1. Dataset
4.2. Parameter Setting
4.3. Experimental Results on NWPU-RESISC45 Dataset
4.4. Experimental Results on WHU-RS19 Dataset
4.5. Ablation Study
4.5.1. Effect of Pre-Training Strategy
4.5.2. Effect of Self-Attention Layers
4.5.3. Discussions of Parameters for Feature Generation
4.5.4. Effect of Prototype Calibration
4.5.5. Effect of Feature Generation
4.5.6. Overview
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yao, X.; Feng, X.; Han, J.; Cheng, G.; Guo, L. Automatic Weakly Supervised Object Detection From High Spatial Resolution Remote Sensing Images via Dynamic Curriculum Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 675–685. [Google Scholar] [CrossRef]
- Huang, X.; Han, X.; Ma, S.; Lin, T.; Gong, J. Monitoring ecosystem service change in the City of Shenzhen by the use of high-resolution remotely sensed imagery and deep learning. Land Degrad. Dev. 2019, 30, 1490–1501. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhong, Y.; Zhang, L.; Li, D. Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6180–6195. [Google Scholar] [CrossRef]
- Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.W. Semi-Supervised Deep Learning Classification for Hyperspectral Image Based on Dual-Strategy Sample Selection. Remote Sens. 2018, 10, 574. [Google Scholar] [CrossRef] [Green Version]
- Othman, E.; Bazi, Y.; Melgani, F.; Alhichri, H.; Alajlan, N.; Zuair, M. Domain adaptation network for cross-scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4441–4456. [Google Scholar] [CrossRef]
- Chaib, S.; Liu, H.; Gu, Y.; Yao, H. Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4775–4784. [Google Scholar] [CrossRef]
- Alajaji, D.; Alhichri, H.S.; Ammour, N.; Alajlan, N. Few-Shot Learning For Remote Sensing Scene Classification. In Proceedings of the Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, Tunis, Tunisia, 9–11 March 2020; pp. 81–84. [Google Scholar]
- Noothout, J.M.H.; De Vos, B.D.; Wolterink, J.M.; Postma, E.M.; Smeets, P.A.M.; Takx, R.A.P.; Leiner, T.; Viergever, M.A.; Išgum, I. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. IEEE Trans. Med. Imaging 2020, 39, 4011–4022. [Google Scholar] [CrossRef]
- Cen, F.; Wang, G. Boosting Occluded Image Classification via Subspace Decomposition-Based Estimation of Deep Features. IEEE Trans. Cybern. 2020, 50, 3409–3422. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhong, Y.; Fei, F.; Zhang, L. Scene semantic classification based on random-scale stretched convolutional neural network for high-spatial resolution remote sensing imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 763–766. [Google Scholar]
- Wu, B.; Meng, D.; Zhao, H. Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks. Remote Sens. 2021, 13, 909. [Google Scholar] [CrossRef]
- Geng, J.; Deng, X.; Ma, X.; Jiang, W. Transfer Learning for SAR Image Classification Via Deep Joint Distribution Adaptation Networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5377–5392. [Google Scholar] [CrossRef]
- Chang, H.; Yeung, D.Y. Semisupervised metric learning by kernel matrix adaptation. In Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 5, pp. 3210–3215. [Google Scholar]
- Shao, L.; Zhu, F.; Li, X. Transfer Learning for Visual Categorization: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Cao, L.; Chen, X. Learning to Learn: Hierarchical Meta-Critic Networks. IEEE Access 2019, 7, 57069–57077. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Xu, D. Distance Metric Learning Using Privileged Information for Face Verification and Person Re-Identification. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 3150–3162. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yang, Y. Two Specific Multiple-Level-Set Models for High-Resolution Remote-Sensing Image Classification. IEEE Geosci. Remote Sens. Lett. 2009, 6, 558–561. [Google Scholar]
- Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene Classification with Recurrent Attention of VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1155–1167. [Google Scholar] [CrossRef]
- Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 730–734. [Google Scholar]
- Li, L.; Han, J.; Yao, X.; Cheng, G.; Guo, L. DLA-MatchNet for Few-Shot Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2020, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Zhu, Z.; Chen, L.; Zhu, J.; Huang, H.; Tao, C. RS-MetaNet: Deep Metametric Learning for Few-Shot Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2020, 1–12. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, K.; Geng, J.; Deng, X. Multi-Scale Metric Learning for Few-Shot Learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1091–1102. [Google Scholar] [CrossRef]
- Reitmaier, T.; Calma, A.; Sick, B. Transductive active learning—A new semi-supervised learning approach based on iteratively refined generative models to capture structure in data. Inf. Sci. 2015, 293, 275–298. [Google Scholar] [CrossRef]
- Geng, J.; Ma, X.; Fan, J.; Wang, H. Semisupervised Classification of Polarimetric SAR Image via Superpixel Restrained Deep Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 122–126. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Liu, C.; Zhang, L.; Fu, Y. Instance Credibility Inference for Few-Shot Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12833–12842. [Google Scholar]
- Zhang, B.; Leung, K.C.; Li, X.; Ye, Y. Learn to abstract via concept graph for weakly-supervised few-shot learning. Pattern Recognit. 2021, 117, 107946. [Google Scholar] [CrossRef]
- Coskun, H.; Zia, M.Z.; Tekin, B.; Bogo, F.; Navab, N.; Tombari, F.; Sawhney, H. Domain-Specific Priors and Meta Learning for Few-Shot First-Person Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 1. [Google Scholar] [CrossRef] [PubMed]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Proc. Neural Inf. Process. Syst. 2016, 29, 3630–3638. [Google Scholar]
- Sugiyarto, A.W.; Abadi, A.M. Prediction of Indonesian Palm Oil Production Using Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). In Proceedings of the 1st International Conference on Artificial Intelligence and Data Sciences, Ipoh, Malaysia, 19 September 2019; pp. 53–57. [Google Scholar]
- Ye, Q.; Yang, X.; Chen, C.; Wang, J. River Water Quality Parameters Prediction Method Based on LSTM-RNN Model. In Proceedings of the Chinese Control Furthermore, Decision Conference, Nanchang, China, 3–5 June 2019; pp. 3024–3028. [Google Scholar]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1199–1208. [Google Scholar]
- Dong, H.; Song, K.; Wang, Q.; Yan, Y.; Jiang, P. Deep metric learning-based for multi-target few-shot pavement distress Classification. IEEE Trans. Industr. Inform. 2021, 1. [Google Scholar] [CrossRef]
- Zhu, W.; Li, W.; Liao, H.; Luo, J. Temperature network for few-shot learning with distribution-aware large-margin metric. Pattern Recognit. 2021, 112, 107797. [Google Scholar] [CrossRef]
- Song, Y.; Chen, C. MPPCANet: A feedforward learning strategy for few-shot image classification. Pattern Recognit. 2021, 113, 107792. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Xu, X.; Lai, Y.; Shen, F.; Chen, L.; Gao, P. Few-shot prototype alignment regularization network for document image layout segementation. Pattern Recognit. 2021, 115, 107882. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Lu, X.; Gong, T.; Zheng, X. Multisource Compensation Network for Remote Sensing Cross-Domain Scene Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2504–2515. [Google Scholar] [CrossRef]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, P.; Zhao, L. Remote Sensing Image Scene Classification Using CNN-CapsNet. Remote Sens. 2019, 11, 494. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote Sensing Scene Classification by Gated Bidirectional Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 82–96. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis. Remote Sens. 2020, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Chen, Y.; Ghamisi, P. Remote Sensing Image Scene Classification via Label Augmentation and Intra-Class Constraint. Remote Sens. 2021, 13, 2566. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, X.; Wang, L. A Multi-Branch Feature Fusion Strategy Based on an Attention Mechanism for Remote Sensing Image Scene Classification. Remote Sens. 2021, 13, 1950. [Google Scholar] [CrossRef]
- Zhang, P.; Bai, Y.; Wang, D.; Bai, B.; Li, Y. Few-Shot Classification of Aerial Scene Images via Meta-Learning. Remote Sens. 2021, 13, 108. [Google Scholar] [CrossRef]
- Mangla, P.; Kumari, N.; Sinha, A.; Singh, M.; Krishnamurthy, B.; Balasubramanian, V.N. Charting the right manifold: Manifold mixup for few-shot learning. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5 March 2020; pp. 2218–2227. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Yang, S.; Liu, L.; Xu, M. Free Lunch for Few-shot Learning: Distribution Calibration. In Proceedings of the International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.; Wen, Y.; Tao, X.; Hong, S. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [Google Scholar] [CrossRef]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Proc. Neural Inf. Process. Syst. 2017, 30, 4077–4087. [Google Scholar]
- Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835. [Google Scholar]
- Zhai, M.; Liu, H.; Sun, F. Lifelong Learning for Scene Recognition in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1472–1476. [Google Scholar] [CrossRef]
Datasets | Datasets | Validation | Testing |
---|---|---|---|
NWPU-RESISC45 | Airplane; Wetland; | ||
Baseball Diamond; | |||
Beach; Stadium; | Commerical area; | Airport; | |
Bridge; Chaparral; | Industrial area; | Basketball court; | |
Church; Sea ice; | Overpass; | Circle farmland; | |
Sparse residential; | Railway station; | Forest; | |
Cloud; Desert; | Runway; | River; | |
Freeway; Island; | Snowberg; | Dense residential; | |
Lake; Ship; | Storage tank; | Ground field; | |
Meadow; Palace; | Tennis Court; | Intersection; | |
Mobile home park; | Power station; | Parking lot; | |
Mountain; Railway; | Terrace; | Mid residential; | |
Rectangular farmland; | |||
Golf course; Harbor; | |||
WHU-RS19 | Airport; | ||
Bridge; | |||
Desert; | Beach; | Commerical; | |
Football field; | Farmland; | Meadow; | |
Industrial; | Forest; | Pond; | |
Mountain; | Park; | River; | |
Parking lot; | Railway station; | Viaduct; | |
Port; | |||
Residential; |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
MatchingNet [29] | 37.81 ± 0.62 | 47.35 ± 0.27 |
Relation Network [32] | 66.35 ± 0.42 | 78.62 ± 0.37 |
MAML [28] | 48.82 ± 0.90 | 62.31 ± 0.82 |
Prototypical Network [51] | 40.41 ± 0.88 | 63.92 ± 0.40 |
Meta-SGD [52] | 60.66 ± 0.66 | 75.82 ± 0.52 |
LLSR [53] | 52.03 ± 0.76 | 72.82 ± 0.62 |
DLA-MatchNet [20] | 68.80 ± 0.70 | 81.63 ± 0.46 |
Ours | 72.05 ± 0.75 | 85.07 ± 0.45 |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
MatchingNet [29] | 50.20 ± 0.89 | 54.20 ± 0.92 |
MAML [28] | 49.32 ± 0.32 | 64.78 ± 0.73 |
Relation Network [32] | 60.92 ± 0.74 | 79.78 ± 0.92 |
Meta-SGD [52] | 51.66 ± 0.82 | 64.76 ± 0.93 |
Prototypical Network [51] | 58.41 ± 0.88 | 80.78 ± 0.40 |
LLSR [53] | 57.64 ± 0.86 | 70.66 ± 0.52 |
DLA-MatchNet [20] | 68.27 ± 1.83 | 79.89 ± 0.33 |
Ours | 72.41 ± 0.91 | 85.26 ± 0.66 |
NWPU-RESISC45 | WHU-RS19 | |
---|---|---|
with self-attention | 71.95 ± 0.76 | 72.11 ± 0.32 |
without self-attention | 69.72 ± 0.43 | 70.25 ± 0.42 |
Proposed Method | WHU-RS19 | NWPU-RESISC45 | ||
---|---|---|---|---|
1-Shot | 5-Shot | 1-Shot | 5-Shot | |
64.45 | 82.03 | 63.23 | 81.54 | |
60.24 | 71.32 | 58.53 | 70.76 | |
64.66 | 75.38 | 63.83 | 74.64 | |
65.42 | 76.21 | 64.21 | 75.32 | |
70.35 | 83.88 | 69.93 | 83.54 | |
71.43 | 84.21 | 71.02 | 84.07 | |
Ours | 72.41 | 85.26 | 72.05 | 85.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Geng, J.; Huang, K.; Jiang, W.; Guo, J. Prototype Calibration with Feature Generation for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2021, 13, 2728. https://doi.org/10.3390/rs13142728
Zeng Q, Geng J, Huang K, Jiang W, Guo J. Prototype Calibration with Feature Generation for Few-Shot Remote Sensing Image Scene Classification. Remote Sensing. 2021; 13(14):2728. https://doi.org/10.3390/rs13142728
Chicago/Turabian StyleZeng, Qingjie, Jie Geng, Kai Huang, Wen Jiang, and Jun Guo. 2021. "Prototype Calibration with Feature Generation for Few-Shot Remote Sensing Image Scene Classification" Remote Sensing 13, no. 14: 2728. https://doi.org/10.3390/rs13142728
APA StyleZeng, Q., Geng, J., Huang, K., Jiang, W., & Guo, J. (2021). Prototype Calibration with Feature Generation for Few-Shot Remote Sensing Image Scene Classification. Remote Sensing, 13(14), 2728. https://doi.org/10.3390/rs13142728