Prior Position- and ZWD-Constrained PPP for Instantaneous Convergence in Real-Time Kinematic Application
Abstract
:1. Introduction
2. Methods
2.1. Position-Constrained PPP for Instantaneous Convergence
2.2. Partial Parameter Estimations with Prior Constraints
2.2.1. Case I: Partial Parameter Estimation Using a Position Constraint
2.2.2. Case II: Partial Parameter Estimation Using Position and ZWD Constraints
2.3. PPP Instantaneous Convergence
2.4. Field Experiment for Improved PPP Validation
3. Results
3.1. Position, Clock, ZWD and Carrier Phase Bias Solutions from Constrained PPP
3.2. Constrained PPP Performance under the Condition of Inherited Variances
3.3. Performance of Constrained PPP Displacement
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Teunissen, P.J.G.; Montenbruck, O. Handbook of Global Navigation Satellite Systems; Springer: Berlin, Germany, 2017. [Google Scholar]
- Zhou, X.Y.; Jiang, W.P.; Chen, H.; Li, Z.; Liu, X. Improving the GRACE kinematic precise orbit determination through modified clock estimating. Sensors 2019, 19, 4347. [Google Scholar] [CrossRef] [Green Version]
- Weinbach, U.; Schön, S. Improved GRACE kinematic orbit determination using GPS receiver clock modeling. GPS Solut. 2012, 17, 511–520. [Google Scholar] [CrossRef]
- Geng, J.; Guo, J.; Chang, H.; Li, X. Toward global instantaneous decimeter-level positioning using tightly coupled multi-constellation and multi-frequency GNSS. J. Geod. 2018, 93, 977–991. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Hancock, C.M.; Xiang, Z.; Kong, Y.; Ligt, H.D.; Shi, H.; Quaye-Ballard, J.A. Precipitable water vapour retrieval from GPS precise point positioning and NCEP CFSv2 dataset during typhoon events. Sensors 2018, 19, 3831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, Z. Improving GNSS PPP accuracy through WVR PWV augmentation. J. Geod. 2019, 93, 1685–1705. [Google Scholar] [CrossRef]
- Cai, C.S.; Liu, Z.Z.; Luo, X.M. Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. J. Navig. 2013, 66, 417–434. [Google Scholar] [CrossRef] [Green Version]
- Lima Filho, V.C.; Moraes, A. Modeling multifrequency GPS multipath fading in land vehicle environments. GPS Solut. 2020, 25, 1–14. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2007, 82, 389–399. [Google Scholar] [CrossRef]
- Zhang, B.C.; Chen, Y.C.; Yuan, Y.B. PPP-RTK based on undifferenced and uncombined observations: Theoretical and practical aspects. J. Geod. 2019, 93, 1011–1024. [Google Scholar] [CrossRef]
- Geng, J.; Meng, X.; Dodson, A.H.; Ge, M.; Teferle, F.N. Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. J. Geod. 2010, 84, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Vadakke Veettil, S.; Aquino, M.; Marques, H.A.; Moraes, A. Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J. Geod. 2020, 94, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, X. Instantaneous re-initialization in real-time kinematic PPP with cycle slip fixing. GPS Solut. 2011, 16, 315–327. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ge, M. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J. Geod. 2010, 85, 151–158. [Google Scholar] [CrossRef]
- Roberts, G.W.; Brown, C.J.; Tang, X.; Meng, X.; Ogundipe, O. A tale of five bridges; the use of GNSS for monitoring the deflections of bridges. J. Appl. Geod. 2014, 8, 241–264. [Google Scholar] [CrossRef]
- Aggrey, J.; Bisnath, S. Improving GNSS PPP convergence: The case of atmospheric-constrained, multi-GNSS PPP-AR. Sensors 2019, 19, 587. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Li, X.; Roberts, G.W.; Hancock, C.M.; de Ligt, H.; Guo, F. 1Hz GPS satellites clock correction estimations to support high-rate dynamic PPP GPS applied on the severn suspension bridge for deflection detection. GPS Solut. 2018, 28, 1–12. [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Sol. EA 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef] [Green Version]
- Estey, L.H.; Meertens, C.M. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
- Jin, S.; Su, K. PPP models and performances from single- to quad-frequency BDS observations. Satell. Navig. 2020, 1, 1–13. [Google Scholar] [CrossRef]
A | B | C | D | E | T1 | T2 | T3 | T4 | |
---|---|---|---|---|---|---|---|---|---|
Morning | 1200 AT503 | 1200 AT503 | 1200 AT503 | 1200 AT503 | SR530 AT504 | SR530 AT504 | SR530 AT504 | SR530 AT504 | |
Afternoon | 1200 AT503 | 1200 AT503 | 1200 AT503 | 1200 AT503 | SR530 AT504 | SR530 AT504 | SR530 AT504 | SR530 AT504 |
GAP 1 | GAP 2 | GAP 3 | GAP 4 | |
---|---|---|---|---|
Point B | - | 10:35:31.9-10:35:47.2 Gap arc: 15.3 sec | - | 11:00:32.6-11:02:02.2 Gap arc: 89.6 sec |
Point C | - | - | 10:37:08.4-10:38:22.1 Gap arc: 73.7 sec | - |
Point D | 10:30:10.0-10:31:43.1 Gap arc: 93.1 sec | - | - | - |
Surveying Points | Standard (m) | Initialized (m) | Inherited (m) | ||
---|---|---|---|---|---|
Pos. | Pos. and ZWD | Pos. | Pos. and ZWD | ||
Point B | 1.55 | 0.14 | 0.12 | 0.13 | 0.14 |
Point C | 0.71 | 0.09 | 0.08 | 0.07 | 0.09 |
Point D | 0.77 | 0.05 | 0.04 | 0.06 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Jin, S.; Roberts, G.W. Prior Position- and ZWD-Constrained PPP for Instantaneous Convergence in Real-Time Kinematic Application. Remote Sens. 2021, 13, 2756. https://doi.org/10.3390/rs13142756
Tang X, Jin S, Roberts GW. Prior Position- and ZWD-Constrained PPP for Instantaneous Convergence in Real-Time Kinematic Application. Remote Sensing. 2021; 13(14):2756. https://doi.org/10.3390/rs13142756
Chicago/Turabian StyleTang, Xu, Shuanggen Jin, and Gethin Wyn Roberts. 2021. "Prior Position- and ZWD-Constrained PPP for Instantaneous Convergence in Real-Time Kinematic Application" Remote Sensing 13, no. 14: 2756. https://doi.org/10.3390/rs13142756
APA StyleTang, X., Jin, S., & Roberts, G. W. (2021). Prior Position- and ZWD-Constrained PPP for Instantaneous Convergence in Real-Time Kinematic Application. Remote Sensing, 13(14), 2756. https://doi.org/10.3390/rs13142756