MAT: GIS-Based Morphometry Assessment Tools for Concave Landforms
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.1.1. Field Data
3.1.2. LiDAR Data
3.2. Description of the Toolbox
3.2.1. Input Data Requirements
3.2.2. Geometry Module
3.2.3. Hypsometry Module
- a—upstream contributing area;
- tanb—local slope in radians.
- V—volume [m3];
- Ap—cell area [m2];
- Zb—cell value of the overlay DEM (before surface);
- Za—cell value of the DEM (after surface).
4. Results
4.1. Landform Geometry Assessment
4.2. Landform Hypsometry Assessment
5. Discussion
5.1. Applicability of the MAT Toolbox for the Morphometric Assessment of the Concave Landforms
5.2. Advantages and Limitations of the MAT Toolbox
- (1)
- Comprehensive morphometric assessment using only one tool in one software;
- (2)
- Minimal set of input data required;
- (3)
- Automatic extraction of the parameters which are widely used, but not available in the ArcGIS Desktop system tools: Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), hypsometric integral (HI), hypsometric curves, and volume of the concave landform;
- (4)
- User-friendly interface (automatic names of the output files; there is no need to set additional parameters by the user);
- (5)
- Short computational time;
- (6)
- Automatic calculation of the descriptive statistics and the output raster layers of the spatial parameters.
5.3. Impact of Data Quality and Resolution
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, J.I. Morphometry from maps. In Essays in Geomorphology; Dury, G.H., Ed.; American Elsevier Publ.: New York, NY, USA, 1966; pp. 235–274. [Google Scholar]
- Janicki, G. System Stoku Zmywowego i Jego Modelowanie Statystyczne—Na Przykładzie Wyżyn Lubelsko-Wołyńskich (Wash Slope Systems and Their Statistical Modeling: Case Study from the Lublin-Volhnian Uplands); Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej: Lublin, Poland, 2016; pp. 1–308, (In English Summary). [Google Scholar]
- Pike, R.J. Geomorphometry–progress, practice, and prospect. Z. Geomorphol. Supp. 1995, 101, 221–238. [Google Scholar]
- Pike, R.J. Geomorphometry—Diversity in quantitative surface analysis. Prog. Phys. Geog. Earth Environ. 2000, 24, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Brzezińska-Wójcik, T. Morfotektonika w Annopolsko-Lwowskim Segmencie Pasa Wyżynnego w Świetle Analizy Cyfrowego Modelu Wysokościowego Oraz Wskaźników Morfometrycznych; Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej: Lublin, Poland, 2013; pp. 1–397. [Google Scholar]
- Jasiewicz, J.; Zwoliński, Z.; Mitasova, H.; Hengl, T. Geomorphometry for Geosciences; Adam Mickiewicz University in Poznań—Institute of Geoecology and Geoinformation, International Society for Geomorphometry: Poznań, Poland, 2015; pp. 1–278. [Google Scholar]
- Casali, J.; Giménez, R.; Campo-Bescós, M.A. Gully geometry: What are we measuring? Soil 2015, 1, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Kociuba, W.; Janicki, G. Spatiotemporal variability of the channel pattern of high Arctic proglacial rivers. In Fluvial Geomorphology and Riparian Vegetation: Environmental Importance, Functions and Effects on Climate Change; Duncan, N., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2015; pp. 53–80. [Google Scholar]
- Woronko, B.; Rychel, J.; Karasiewicz, T.M.; Kupryjanowicz, M.; Adamczyk, A.; Fiłoc, M.; Marks, L.; Krzywicki, T.; Pachocka-Szwarc, K. Post-Saalian transformation of dry valleys in eastern Europe: An example from NE Poland. Quarter. Int. 2018, 467, 166–171. [Google Scholar] [CrossRef]
- Karasiewicz, T.; Tobojko, L.; Świtoniak, M.; Milewska, K.; Tyszkowski, S. The morphogenesis of erosional valleys in the slopes of the Drwęca valley and the properties of the colluvial infills. Biull. Geogr. Phisical Geogr. Ser. 2019, 16, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Kociuba, W.; Janicki, G.; Dyer, J.L. Contemporary changes of the channel pattern and braided gravel-bed flood-plain under rapid small valley glacier recession (Scott River catchment, Spitsbergen). Geomorphology 2019, 328, 79–92. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Wysocki, D.A. Geomorphic Description System, Version 5.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2017.
- MacMillan, R.A.; Shary, P.A. Chapter 9 Landforms and Landform Elements in Geomorphometry. Dev. Soil Sci. Elsevier 2009, 33, 227–254. [Google Scholar] [CrossRef]
- Evans, I.S. Geomorphometry and landform mapping: What is a landform? Geomorphology 2012, 137, 94–106. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. GSA Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill Book Company: New York, NY, USA, 1964; Section 4–11; pp. 4–76. [Google Scholar]
- Casali, J.; Loizu, J.; Campo, M.A.; De Santisteban, L.M.; Alvarez-Mozos, J. Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena 2006, 67, 128–138. [Google Scholar] [CrossRef]
- Castillo, C.; Perez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gomez, J.A. Comparing the accuracy of several field methods for measuring gully erosion. Soil. Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Cheng, H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 2005, 63, 154–166. [Google Scholar] [CrossRef]
- Hu, G.; Wu, Y.; Liu, B.; Zhang, Y.; You, Z.; Yu, Z. The characteristics of gully erosion over rolling hilly black soil areas of Northeast China. J. Geogr. Sci. 2009, 19, 309–320. [Google Scholar] [CrossRef]
- Perroy, R.L.; Bookhagen, B.; Asner, G.P.; Chadwick, O.A. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology 2010, 118, 288–300. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Proc. Land. 2014, 40, 741–755. [Google Scholar] [CrossRef]
- Kociuba, W.; Janicki, G.; Rodzik, J.; Stępniewski, K. Comparison of volumetric and remote sensing methods (TLS) for assessing the development of a permanent forested loess gully. Nat. Hazards 2015, 79, 139–158. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Todisco, F.; Mannocchi, F.; Radicioni, F. Measuring rill erosion by laser scanning. Catena 2015, 124, 97–108. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Armston, J.D.; Muir, J.; Stiller, I. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland. Geomorphology 2017, 282, 195–208. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. 2012, 117, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhang, S.; Pu, L.; Yang, J.; Chen, J.; Guan, C.; Wang, Q.; Chen, D.; Fu, B.; Sang, X. Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the Sancha River catchment, Northeast China. ISPRS Int. J. Geo Inf. 2016, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W. Analysis of the Development of an Erosion Gully in an Open-Pit Coal Mine Dump During a Winter Freeze-Thaw Cycle by Using Low-Cost UAVs. Remote Sens. 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Niculiță, M.; Mărgărint, M.C.; Tarolli, P. Chapter 10—Using UAV and LiDAR data for gully geomorphic changes monitoring. Dev. Earth Surf. Proc. 2020, 23, 271–315. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Govers, G. Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena 2003, 50, 329–352. [Google Scholar] [CrossRef]
- Bouchnak, H.; Felfoul, M.S.; Boussema, M.R.; Snane, M.H. Slope and rainfall effects on the volume of sediment yield by gully erosion in the Souar lithologic formation (Tunisia). Catena 2009, 78, 170–177. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Scholiers, N.; Jacob, M.; Haile, M.; Deckers, J.; Nyssen, J. Factors controlling the morphology and volume (V)–length (L) relations of permanent gullies in the northern Ethiopian Highlands. Earth Surf. Proc. Land. 2013, 38, 1672–1684. [Google Scholar] [CrossRef] [Green Version]
- Stöcker, C.; Eltner, A.; Karrasch, P. Measuring gullies by synergetic application of UAV and close range photogrammetry—A case study from Andalusia, Spain. Catena 2015, 132, 1–11. [Google Scholar] [CrossRef]
- James, L.A.; Watson, D.G.; Hansen, W.F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena 2007, 71, 132–144. [Google Scholar] [CrossRef]
- Evans, M.; Lindsay, J.B. High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surf. Proc. Land. 2010, 35, 876–886. [Google Scholar] [CrossRef]
- Wu, H.; Zu, X.; Zheng, F.; Qin, C.; He, X. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique. Earth Surf. Proc. Land. 2018, 43, 1701–1710. [Google Scholar] [CrossRef]
- Zumpano, V.; Pisano, L.; Parise, M. An integrated framework to identify and analyze karst sinkholes. Geomorphology 2019, 332, 213–225. [Google Scholar] [CrossRef]
- Kociuba, W.; Janicki, G.; Rodzik, J. 3D laser scanning as a new tool of assessment of erosion rates in forested lo-ess gullies (case study: Kolonia Celejów, Lublin Upland). Ann. Univ. Mariae Curie Sklodowska 2014, 69, 107–116. [Google Scholar]
- Wells, R.R.; Momm, H.G.; Bennett, S.J.; Gesch, K.R.; Dabney, S.M.; Cruse, R.; Wilson, G.V. A measurement method for rill and ephemeral gully erosion assessments. Soil Sci. Soc. Am. J. 2016, 80, 203–214. [Google Scholar] [CrossRef]
- Kociuba, W. Different Paths for Developing Terrestrial LiDAR Data for Comparative Analyses of Topographic Surface Changes. Appl. Sci. 2020, 10, 7409. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azañón, J.M.; Azor, A. CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comput. Geosci. 2009, 35, 1214–1223. [Google Scholar] [CrossRef]
- Spagnolo, M.; Pellitero, R.; Barr, I.D.; Ely, J.C.; Pellicer, X.M.; Rea, B.R. ACME, a GIS tool for Automated Cirque Metric Extraction. Geomorphology 2017, 278, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Gafeira, J.; Dolan, M.F.J.; Monteys, X. Geomorphometric Characterization of Pockmarks by Using a GIS-Based Semi-Automated Toolbox. Geosciences 2018, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Jose, C.; Thomas, J.; Prasannakumar, V.; Reghunath, R. BaDAM Toolbox: A GIS-Based Approach for Automated Drainage Basin Morphometry. J. Indian Soc. Remote Sens. 2018, 47, 467–478. [Google Scholar] [CrossRef]
- Báčová, M.; Krása, J.; Devátý, J.; Kavka, P. A GIS method for volumetric assesments of erosion rills from digital surface madels. Eur. J. Remote Sens. 2019, 52, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Samadi, M.; Shahabi, H.; Azareh, A.; Rafiei-Sardooi, E.; Alilou, H.; Melesse, A.M.; Pradhan, B.; Chapi, K.; Shirzadi, A. SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geosci. Front. 2019, 10, 2167–2175. [Google Scholar] [CrossRef]
- Arabameri, A.; Asadi Nalivan, O.; Saha, S.; Roy, J.; Pradhan, B.; Tiefenbacher, J.P.; Thi Ngo, P.T. Novel Ensemble Approaches of Machine Learning Techniques in Modeling the Gully Erosion Susceptibility. Remote Sens. 2020, 12, 1890. [Google Scholar] [CrossRef]
- Šiljeg, A.; Domazetović, F.; Marić, I.; Lončar, N.; Panđa, L. New Method for Automated Quantification of Vertical Spatio-Temporal Changes within Gully Cross-Sections Based on Very-High-Resolution Models. Remote Sens. 2021, 13, 321. [Google Scholar] [CrossRef]
- Villaça, C.V.N.; Crósta, A.P.; Grohmann, C.H. Morphometric Analysis of Pluto’s Impact Craters. Remote Sens. 2021, 13, 377. [Google Scholar] [CrossRef]
- Matos, A.; Dilts, T.E. Hypsometric Integral Toolbox for ArcGIS. University of Nevada Reno. Available online: https://www.arcgis.com/home/item.html?id=23a2dd9d127f41c195628457187d4a54 (accessed on 6 April 2021).
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediments budgest. Earth Surf. Proc. Land. 2009, 35, 136–156. [Google Scholar] [CrossRef]
- Gessesse, G.D.; Fuchs, H.; Mansberger, R.; Klik, A.; Rieke-Zapp, D.H. Assessment of erosion, deposition and rill development on irregular soil surfaces using close range digital photogrammetry. Photogramm. Rec. 2010, 25, 299–318. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Washington-Allen, R.A.; Li, Y.; Li, H.; Hu, Q. The effect of grid size on the quantification of erosion, deposition, and rill network. Int. Soil Water Conserv. Res. 2017, 5, 241–251. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Orem, C.A. How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area? Insights from airborne-LiDAR change detection. Earth Surf. Proc. Land. 2014, 39, 1822–1832. [Google Scholar] [CrossRef]
- Heckmann, T.; Vericat, D. Computing spatially distributed sediment delivery ratios: Inferring functional sediment connectivity from repeat high-resolution digital elevation models. Earth Surf. Proc. Land. 2018, 43, 1547–1554. [Google Scholar] [CrossRef]
- Mora, O.E.; Lenzano, M.G.; Toth, C.K.; Grejner-Brzezinska, D.A.; Fayne, J.V. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Kaspark, A.; Caster, J.; Bangen, S.G.; Sankey, J.B. Geomorphic process from topographic form: Automating the interpretation of repeat survey data in river valleys. Earth Surf. Proc. Land. 2017, 42, 1872–1883. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef] [Green Version]
- Marks, L. Timing of the Late Vistulian (Weischselian) glacial phases in Poland. Quat. Sci. Rev. 2012, 44, 81–88. [Google Scholar] [CrossRef]
- Karczewski, A. Morfogeneza Strefy Marginalnej Fazy Pomorskiej na Obszarze Lobu Parsęty w Vistulianie (Pomorze Środkowe) (Morphogenesis of the Pomeranian Phase Marginal Zone in the Parseta Lobe Region in the Vistulian (Middle Pomerania)); Wyd. Nauk. UAM Seria Geografia 44: Poznań, Poland, 1989; pp. 1–48. (In Polish) [Google Scholar]
- Starkel, L. Geografia Polski. Środowisko Przyrodnicze; Wyd. Nauk. PWN: Warszawa, Poland, 1991; pp. 1–670. (In Polish) [Google Scholar]
- Paluszkiewicz, R. Postglacjalna Ewolucja Dolinek Erozyjno-Denudacyjnych w Wybranych Strefach Krawędziowych Pojezierza Zachodniopomorskiego (Postglacial Evolution of Erosional-Denudational Valleys in Selected Scarp Zones of the West Pomeranian Lakeland); Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2016; pp. 1–225, (In English Summary). [Google Scholar]
- Dobracka, E. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w Skali 1:50 000; Arkusz Połczyn Zdrój (158): Warszawa, Poland, 2017; pp. 1–71. [Google Scholar]
- Head Office of Geodesy and Cartography. GUGiK Data PZGiK. Available online: http://www.gugik.gov.pl/pzgik (accessed on 6 April 2021).
- ISOK—IT System of the Country’s Protection. Available online: https://isok.gov.pl/ (accessed on 6 April 2021).
- ASPRS. LAS Specification. Version 1.2; The American Society for Photogrammetry & Remote Sensing: Bethesda, MD, USA, 2008; pp. 1–13. [Google Scholar]
- Axelsson, P. Processing of laser scanner data—Algorithms and applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 138–147. [Google Scholar] [CrossRef]
- Kurczyński, Z.; Stojek, E.; Cisło-Lesicka, U. Zadania GUGiK realizowane w ramach projektu ISOK. In Podręcznik Dla Uczestników Szkoleń z Wykorzystania Produktów LiDAR; Wężyk, P., Ed.; Główny Urząd Geodezji i Kartografii: Warszawa, Poland, 2015; pp. 22–58. (In Polish) [Google Scholar]
- LAS Dataset to Raster Function—Help ArcGIS for Desktop. Available online: https://desktop.arcgis.com/en/arcmap/10.7/manage-data/raster-and-images/las-dataset-to-raster-function.htm (accessed on 6 April 2021).
- Creating Raster DEMs and DSMs from Large Lidar Point Collections—Help ArcGIS Desktop. Available online: https://desktop.arcgis.com/en/arcmap/10.7/manage-data/las-dataset/lidar-solutions-creating-raster-dems-and-dsms-from-large-lidar-point-collections.htm (accessed on 6 April 2021).
- Dawid, W.; Pokonieczny, K. Analysis of the Possibilities of Using Different Resolution Digital Elevation Models in the Study of Microrelief on the Example of Terrain Passability. Remote Sens. 2020, 12, 4146. [Google Scholar] [CrossRef]
- Jenness, J.; Brost, B.; Beier, P. Land Facet Corridor Designer: Extension for ArcGIS. Jenness Enterprises. 2011. Available online: http://www.jennessent.com/arcgis/land_facets.htm (accessed on 6 April 2021).
- ESRI Arc Hydro Tools—Tutorial, Version 2; Environmental Systems Research Institute: New York, NY, USA, 2011.
- Kobal, M.; Bertoncelj, I.; Pirotti, F.; Dakskobler, I.; Kutnar, L. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover—case study of a high karst area in the Dinaric mountains. PLoS ONE 2015, 10, e0122070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, R.E. Drainage-basin characteristic. Eos Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee; Office of Naval Research, Technical Report 3; Department of Geology, Columbia University: New York, NY, USA, 1953; p. 51. [Google Scholar]
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems, 2nd ed.; Oxford University Press: New York, NY, USA, 1998; pp. 1–190. [Google Scholar]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. GSA Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation–relief ratio, hypsometric integral and geomorphic area–altitude analysis. GSA Bull. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Jahn, A. Morphological slope evolution by linear and surface degradation. Geogr. Pol. 1968, 14, 9–22. [Google Scholar]
- Majewski, M.; Paluszkiewicz, R. The origin and evolution of small dry valleys in the last-glacial area on the example of the Pomeranian Lake District (Poland). Est. J. Earth Sci. 2019, 68, 26–36. [Google Scholar] [CrossRef]
- Gregory, K.J.; Walling, D.E. Drainage Basin: Form and Processes; Edward Arnold: London, UK, 1973; pp. 1–458. [Google Scholar]
- Mazurek, M. Hydrogeomorfologia Obszarów Źródliskowych (Dorzecze Parsęty, Polska NW). Hydrogeomorphology of Channel Heads (the Parseta Drainage Basin, Nw Poland); Adam Mickiewicz University Press: Poznań, Poland, Seria Geografia 92; 2010; pp. 1–304, (In English Summary). [Google Scholar]
- Mazaeva, O.; Pelinen, V.; Janicki, G. Development of bank gullies on the shore zone of the Bratsk Reservoir (Russia). Ann. Univ. Mariae Curie Sklodowska 2014, 69, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, M. Morphometric differences in channel heads in a postglacial zone (Parsęta catchment, West Pomerania). Quest. Geogr. 2006, 25A, 39–47. [Google Scholar]
- Mazurek, M. Geomorphological processes in channel heads initiated by groundwater outflows (the Parsęta catchment, north-western Poland). Quaest. Geogr. 2011, 30, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Pawleta, M.; Zapłata, R. Nieinwazyjne Rozpoznanie Zasobów Dziedzictwa Archeologicznego: Potencjał i Możliwości; Uniwersytet im. A. Mickiewicza w Poznaniu, Fundacja “5Medium”, E-Naukowiec: Poznań, Poland, 2015; pp. 1–329. (In Polish) [Google Scholar]
Tool | Morphometric Parameters | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Perimeter | Length | Width | Orientation | Elongation Ratio | Circularity Ratio | Compactness Coefficient | Form Factor | Elevation | Slope | Aspect | TRI | TWI | HI | Volume | |
CalHypso [42] | × | |||||||||||||||
ACME [43] | × | × | × | × | × | × | × | × | × | × | ||||||
BaDAM [44] | × | × | × | × | × | × | × | × | × | × | ||||||
rillStats [46] | × | |||||||||||||||
SWPT [47] | × | × | × | × | × | × | × | × | × | |||||||
Hypsometric Integral Toolbox [51] | × |
Test Area | Hypsometric Parameters | ||||
---|---|---|---|---|---|
Minimum Elevation (m a.s.l.) | Maximum Elevation (m a.s.l.) | Elevation Range (m) | Maximum Slope (°) | Mean Slope (°) | |
Buślarki | 56.2 | 121.9 | 65.7 | 51.0 | 7.1 |
Piaski Pomorskie | 69.9 | 144.3 | 74.4 | 62.3 | 5.9 |
Koprzywno | 80.3 | 159.8 | 79.5 | 56.7 | 6.8 |
Rymierowo | 141.5 | 164.2 | 22.7 | 46.5 | 4.2 |
Geometric Parameters | Units | Formula | References |
---|---|---|---|
Area (A) | (m2) | The projected area enclosed by form boundary | |
Perimeter (P) | (m) | Length of the horizontal projection of form boundary | |
Length (L) | (m) | Length of the long axis | |
Width (W) | (m) | W = A/L | [76] |
Orientation (O) | (°) | Orientation (azimuth) of the long axis | |
Elongation ratio (Re) | (-) | /L | [16] |
Circularity ratio (Rc) | (-) | Rc = 4πA/P2 | [77] |
Compactness coefficient (Cc) | (-) | [15] | |
Form factor (Ff) | (-) | Ff = A/L2 | [76] |
Shape Factor (Sf) | (-) | Sf = 1/Ff | [77] |
Hypsometric Parameters | Units | Formula | References |
---|---|---|---|
Maximum elevation (Zmax) | (m) | Maximum elevation from DEM | |
Mean elevation (Zmean) | (m) | Mean elevation from DEM | |
Minimum elevation (Zmin) | (m) | Minimum elevation from DEM | |
Elevation range (Zrange) | (m) | Zrange = Zmax − Zmin | |
Maximum slope (Smax) | (°) | Maximum slope calculated from DEM | [78] |
Mean slope (Smean) | (°) | Mean slope calculated from DEM | [78] |
Minimum slope (Smin) | (°) | Minimum slope calculated from DEM | [78] |
Mean aspect (Amean) | (°) | Mean aspect calculated from DEM | [78] |
Maximum Terrain Ruggedness Index (TRImax) | (m) | Maximum Terrain Ruggedness Index calculated from DEM | [79] |
Mean Terrain Ruggedness Index (TRImean) | (m) | Mean Terrain Ruggedness Index calculated from DEM | [79] |
Minimum Terrain Ruggedness Index (TRImin) | (m) | Minimum Terrain Ruggedness Index calculated from DEM | [79] |
Maximum Topographic Wetness Index (TWImax) | (-) | Maximum Topographic Wetness Index calculated from DEM | [80] |
Mean Topographic Wetness Index (TWImean) | (-) | Mean Topographic Wetness Index calculated from DEM | [80] |
Minimum Topographic Wetness Index (TWImin) | (-) | Minimum Topographic Wetness Index calculated from DEM | [80] |
Hypsometric integral (HI) | (-) | [81,82] | |
Volume (V) | (m3) | V = Ap—cell area Zb—cell value of the overlay DEM (before surface) Za—cell value of the DEM (after surface) |
Test Area | Valley | Geometric Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A Area (m2) | P Perimeter (m) | L Length (m) | W Width (m) | O Orientation (°) | Re Elongation Ratio (-) | Rc Circularity Ratio (-) | Cc Compactness Coefficient (-) | Ff Form Factor (-) | Sf Shape Factor (-) | ||
Buślarki | 1 | 3529.01 | 286.23 | 122.10 | 28.90 | 107.50 | 0.55 | 0.54 | 1.36 | 0.24 | 4.22 |
2 | 457.07 | 125.34 | 56.85 | 8.04 | 95.30 | 0.42 | 0.37 | 1.65 | 0.14 | 7.07 | |
3 | 1019.36 | 222.39 | 104.78 | 9.73 | 103.10 | 0.34 | 0.26 | 1.96 | 0.09 | 10.77 | |
4 | 434.06 | 106.12 | 39.98 | 10.86 | 124.30 | 0.59 | 0.48 | 1.44 | 0.27 | 3.68 | |
5 | 2637.33 | 389.97 | 145.92 | 18.07 | 91.00 | 0.40 | 0.22 | 2.14 | 0.12 | 8.07 | |
6 | 681.23 | 136.02 | 57.66 | 11.81 | 85.60 | 0.51 | 0.46 | 1.47 | 0.20 | 4.88 | |
7 | 1588.49 | 266.74 | 110.49 | 14.38 | 106.80 | 0.41 | 0.28 | 1.89 | 0.13 | 7.69 | |
8 | 2372.08 | 251.17 | 112.16 | 21.15 | 104.10 | 0.49 | 0.47 | 1.45 | 0.19 | 5.30 | |
Piaski Pomorskie | 9 | 1368.46 | 208.62 | 94.32 | 14.51 | 170.90 | 0.44 | 0.40 | 1.59 | 0.15 | 6.50 |
10 | 3565.03 | 260.54 | 95.02 | 37.52 | 140.30 | 0.71 | 0.66 | 1.23 | 0.39 | 2.53 | |
11 | 1476.07 | 207.78 | 85.48 | 17.27 | 25.70 | 0.51 | 0.43 | 1.53 | 0.20 | 4.95 | |
12 | 887.51 | 138.55 | 52.54 | 16.89 | 12.00 | 0.64 | 0.58 | 1.31 | 0.32 | 3.11 | |
13 | 971.33 | 212.99 | 74.71 | 13.00 | 129.30 | 0.47 | 0.27 | 1.93 | 0.17 | 5.75 | |
14 | 775.84 | 146.13 | 63.40 | 12.24 | 25.60 | 0.50 | 0.46 | 1.48 | 0.19 | 5.18 | |
15 | 2015.84 | 267.09 | 109.86 | 18.35 | 58.30 | 0.46 | 0.36 | 1.68 | 0.17 | 5.99 | |
Koprzywno | 16 | 2557.94 | 283.54 | 122.84 | 20.82 | 47.50 | 0.46 | 0.40 | 1.58 | 0.17 | 5.90 |
17 | 4161.63 | 330.26 | 142.88 | 29.13 | 74.80 | 0.51 | 0.48 | 1.44 | 0.20 | 4.91 | |
18 | 1649.22 | 180.37 | 79.26 | 20.81 | 83.00 | 0.58 | 0.64 | 1.25 | 0.26 | 3.81 | |
Rymierowo | 19 | 3607.61 | 262.82 | 96.52 | 37.38 | 124.40 | 0.70 | 0.66 | 1.23 | 0.39 | 2.58 |
20 | 1124.03 | 146.11 | 59.50 | 18.89 | 127.70 | 0.64 | 0.66 | 1.23 | 0.32 | 3.15 | |
21 | 847.35 | 111.42 | 39.89 | 21.24 | 155.70 | 0.82 | 0.86 | 1.08 | 0.53 | 1.88 | |
Statistics | Max | 4161.63 | 389.97 | 145.92 | 37.52 | 170.90 | 0.82 | 0.86 | 2.14 | 0.53 | 10.77 |
Mean | 1796.50 | 216.20 | 88.87 | 19.09 | 94.90 | 0.53 | 0.47 | 1.52 | 0.23 | 5.14 | |
Min | 434.06 | 106.12 | 39.89 | 8.04 | 12.00 | 0.34 | 0.22 | 1.08 | 0.09 | 1.88 | |
Std | 1149.36 | 76.89 | 31.77 | 8.23 | 42.82 | 0.12 | 0.16 | 0.28 | 0.11 | 2.13 |
Test Area | Valley | Hypsometric Parameters | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zmax Maximum Elevation (m) | Zmean Mean Elevation (m) | Zmin Minimum Elevation (m) | Zrange Elevation Range (m) | Smax Maximum Slope (°) | Smean Mean Slope (°) | Smin Minimum Slope (°) | Amean Mean Aspect (°) | TRImax Maximum TRI (m) | TRImean Mean TRI (m) | TRImin Minimum TRI (m) | TWImax Maximum TWI (-) | TWImean Mean TWI (-) | TWImin Minimum TWI (-) | HI Hypsometric Integral (-) | ||
Buślarki | 1 | 78.06 | 73.27 | 64.57 | 13.49 | 33.24 | 14.20 | 0.20 | 109.96 | 0.50 | 0.21 | 0.02 | 10.42 | 3.20 | 0.55 | 0.64 |
2 | 78.53 | 74.56 | 69.95 | 8.58 | 30.95 | 17.32 | 2.52 | 112.92 | 0.48 | 0.27 | 0.10 | 8.41 | 2.77 | 0.62 | 0.53 | |
3 | 81.73 | 76.11 | 70.57 | 11.16 | 32.97 | 14.35 | 0.78 | 108.73 | 0.51 | 0.23 | 0.04 | 9.85 | 2.99 | 0.58 | 0.49 | |
4 | 81.40 | 78.67 | 75.87 | 5.53 | 27.85 | 13.97 | 2.95 | 139.81 | 0.41 | 0.22 | 0.08 | 7.99 | 2.77 | 0.71 | 0.50 | |
5 | 82.35 | 75.90 | 67.09 | 15.26 | 45.27 | 21.37 | 0.46 | 122.07 | 0.80 | 0.35 | 0.05 | 11.21 | 2.56 | 0.12 | 0.57 | |
6 | 80.96 | 77.36 | 73.40 | 7.56 | 37.90 | 18.36 | 3.69 | 112.71 | 0.58 | 0.29 | 0.08 | 8.90 | 2.60 | 0.34 | 0.52 | |
7 | 81.21 | 74.71 | 66.84 | 14.37 | 36.58 | 16.33 | 0.78 | 115.49 | 0.56 | 0.25 | 0.04 | 10.42 | 2.83 | 0.41 | 0.54 | |
8 | 80.99 | 75.25 | 69.41 | 11.58 | 42.12 | 16.80 | 0.82 | 103.15 | 0.72 | 0.26 | 0.03 | 13.51 | 2.84 | 0.16 | 0.50 | |
Piaski Pomorskie | 9 | 100.99 | 92.83 | 83.06 | 17.93 | 36.53 | 19.95 | 3.33 | 169.72 | 0.57 | 0.31 | 0.06 | 9.06 | 2.72 | 0.32 | 0.54 |
10 | 100.62 | 92.18 | 84.97 | 15.65 | 39.17 | 17.42 | 0.20 | 166.60 | 0.64 | 0.25 | 0.02 | 11.94 | 3.07 | 0.33 | 0.46 | |
11 | 103.81 | 101.66 | 97.84 | 5.97 | 37.00 | 11.95 | 0.43 | 185.87 | 0.58 | 0.18 | 0.02 | 10.99 | 3.27 | 0.35 | 0.64 | |
12 | 100.60 | 97.51 | 93.99 | 6.61 | 43.38 | 22.31 | 1.47 | 181.89 | 0.75 | 0.36 | 0.06 | 9.54 | 2.39 | 0.06 | 0.54 | |
13 | 95.19 | 91.49 | 87.52 | 7.67 | 38.24 | 20.36 | 1.23 | 145.52 | 0.56 | 0.30 | 0.04 | 9.95 | 2.56 | 0.41 | 0.54 | |
14 | 98.48 | 95.34 | 94.22 | 4.26 | 40.56 | 16.93 | 0.10 | 202.81 | 0.63 | 0.23 | 0.01 | 17.19 | 3.26 | 0.23 | 0.37 | |
15 | 102.54 | 98.61 | 96.70 | 5.84 | 40.87 | 15.37 | 0.10 | 233.24 | 0.67 | 0.22 | 0.01 | 13.57 | 3.30 | 0.14 | 0.36 | |
Koprzywno | 16 | 129.08 | 117.25 | 105.16 | 23.92 | 52.04 | 34.62 | 2.49 | 226.44 | 0.95 | 0.56 | 0.06 | 10.47 | 2.11 | −0.11 | 0.50 |
17 | 128.74 | 116.56 | 104.22 | 24.52 | 50.95 | 33.67 | 2.02 | 222.43 | 0.96 | 0.53 | 0.12 | 10.91 | 2.27 | −0.15 | 0.50 | |
18 | 94.91 | 90.20 | 85.23 | 9.68 | 44.27 | 22.84 | 0.62 | 222.71 | 0.75 | 0.35 | 0.02 | 12.87 | 2.54 | 0.09 | 0.51 | |
Rymierowo | 19 | 157.76 | 150.84 | 146.32 | 11.44 | 38.15 | 16.82 | 1.26 | 144.23 | 0.60 | 0.24 | 0.02 | 11.37 | 3.16 | 0.31 | 0.39 |
20 | 159.41 | 156.51 | 151.22 | 8.19 | 43.19 | 24.44 | 0.10 | 134.17 | 0.73 | 0.39 | 0.01 | 11.85 | 2.47 | 0.12 | 0.64 | |
21 | 158.11 | 155.71 | 150.43 | 7.68 | 34.46 | 16.40 | 0.23 | 140.08 | 0.51 | 0.24 | 0.02 | 7.89 | 2.64 | 0.40 | 0.68 | |
Statistics | Max | 159.41 | 156.51 | 151.22 | 24.52 | 52.04 | 34.62 | 3.69 | 233.24 | 0.96 | 0.56 | 0.12 | 17.19 | 3.30 | 0.71 | 0.68 |
Mean | 103.59 | 98.22 | 92.31 | 11.28 | 39.32 | 19.32 | 1.23 | 157.17 | 0.64 | 0.30 | 0.04 | 10.87 | 2.78 | 0.29 | 0.52 | |
Min | 78.06 | 73.27 | 64.57 | 4.26 | 27.85 | 11.95 | 0.10 | 103.15 | 0.41 | 0.18 | 0.01 | 7.89 | 2.11 | −0.15 | 0.36 | |
Std | 27.14 | 26.86 | 26.94 | 5.70 | 6.03 | 5.86 | 1.15 | 44.00 | 0.15 | 0.10 | 0.03 | 2.18 | 0.34 | 0.23 | 0.09 |
Test Area | Valley | Volumetric Parameter | ||
---|---|---|---|---|
V Volume (m3) Based on the Field Data | V Volume (m3) Based on the LiDAR Data | V Error (%) | ||
Buślarki | 1 | 5077.81 | 5020.97 | −1.12 |
2 | 243.10 | 212.30 | −12.67 | |
3 | 553.97 | 489.15 | −11.70 | |
4 | 212.52 | 154.13 | −27.47 | |
5 | 3614.32 | 3728.28 | 3.15 | |
6 | 600.72 | 557.98 | −7.11 | |
7 | 1222.37 | 1229.12 | 0.55 | |
8 | 2931.81 | 3035.10 | 3.52 | |
Piaski Pomorskie | 9 | 1584.98 | 1532.78 | −3.29 |
10 | 11,637.23 | 7257.00 | −37.64 | |
11 | 1864.29 | 1506.53 | −19.19 | |
12 | 1331.84 | 1187.95 | −10.80 | |
13 | 1215.01 | 1219.49 | 0.37 | |
14 | 1212.70 | 920.31 | −24.11 | |
15 | 3674.79 | 2376.38 | −35.33 | |
Koprzywno | 16 | 3732.90 | 3769.40 | 0.98 |
17 | 16,833.17 | 16,809.18 | −0.14 | |
18 | 3244.13 | 3116.72 | −3.93 | |
Rymierowo | 19 | 12,908.40 | 13,967.69 | 8.21 |
20 | 2146.14 | 2392.79 | 11.49 | |
21 | 232.69 | 305.49 | 31.29 |
Test Area | Valley | VNaturalNeighbor | VIDW | VIDW Error (%) | VKRIGING | VKRIGING Error (%) | VSPLINE | VSPLINE Error (%) | VTREND | VTREND Error (%) | VTIN | VTIN Error (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Buślarki | 1 | 5077.81 | 5202.73 | 2.46 | 5228.72 | 2.97 | 5321.72 | 4.80 | 5963.83 | 17.45 | 4756.05 | −6.34 |
2 | 243.10 | 219.90 | −9.54 | 242.39 | −0.29 | 236.67 | −2.64 | 278.84 | 14.70 | 225.38 | −7.29 | |
3 | 553.97 | 527.22 | −4.83 | 552.86 | −0.20 | 546.52 | −1.34 | 640.18 | 15.56 | 598.36 | 8.01 | |
4 | 212.52 | 183.74 | −13.54 | 209.65 | −1.35 | 215.67 | 1.48 | 228.26 | 7.41 | 227.58 | 7.09 | |
5 | 3614.32 | 3569.90 | −1.23 | 3604.20 | −0.28 | 3633.83 | 0.54 | 3886.42 | 7.53 | 3658.12 | 1.21 | |
6 | 600.72 | 604.46 | 0.62 | 610.57 | 1.64 | 663.95 | 10.53 | 653.87 | 8.85 | 616.90 | 2.69 | |
7 | 1222.37 | 1123.79 | −8.06 | 1216.11 | −0.51 | 1260.27 | 3.10 | 1298.92 | 6.26 | 1168.92 | −4.37 | |
8 | 2931.81 | 3060.27 | 4.38 | 3008.40 | 2.61 | 3044.85 | 3.86 | 3021.89 | 3.07 | 2942.23 | 0.36 | |
Piaski Pomorskie | 9 | 1584.98 | 1555.28 | −1.87 | 1584.70 | −0.02 | 1613.41 | 1.79 | 1827.09 | 15.28 | 1576.29 | −0.55 |
10 | 11,637.23 | 9623.34 | −17.31 | 11,295.39 | −2.94 | 11,711.67 | 0.64 | 10,893.41 | −6.39 | 11,921.41 | 2.44 | |
11 | 1864.29 | 1678.19 | −9.98 | 1867.58 | 0.18 | 2083.01 | 11.73 | 1535.24 | −17.65 | 1912.48 | 2.58 | |
12 | 1331.84 | 1269.38 | −4.69 | 1310.65 | −1.59 | 1341.30 | 0.71 | 1284.05 | −3.59 | 1313.75 | −1.36 | |
13 | 1215.01 | 1184.28 | −2.53 | 1194.35 | −1.70 | 1241.64 | 2.19 | 1242.05 | 2.23 | 1205.81 | −0.76 | |
14 | 1212.70 | 1197.52 | −1.25 | 1229.15 | 1.36 | 1426.48 | 17.63 | 1316.61 | 8.57 | 1154.62 | −4.79 | |
15 | 3674.79 | 3703.62 | 0.78 | 3625.00 | −1.36 | 4294.24 | 16.86 | 3549.13 | −3.42 | 3738.13 | 1.72 | |
Koprzywno | 16 | 3732.90 | 3716.31 | −0.44 | 3720.15 | −0.34 | 4053.43 | 8.59 | 3611.89 | −3.24 | 3739.19 | 0.17 |
17 | 16,833.17 | 16,249.21 | −3.47 | 16,611.01 | −1.32 | 18,291.73 | 8.66 | 17,519.12 | 4.07 | 16,622.86 | −1.25 | |
18 | 3244.13 | 3059.52 | −5.69 | 3248.73 | 0.14 | 3169.06 | −2.31 | 3431.49 | 5.78 | 3253.14 | 0.28 | |
Rymierowo | 19 | 12,908.40 | 11,086.76 | −14.11 | 12,009.05 | −6.97 | 15,025.12 | 16.40 | 15,020.46 | 16.36 | 12,728.45 | −1.39 |
20 | 2146.14 | 2226.96 | 3.77 | 2182.22 | 1.68 | 2228.42 | 3.83 | 2279.44 | 6.21 | 2146.22 | 0.00 | |
21 | 232.69 | 247.00 | 6.15 | 229.44 | −1.40 | 273.31 | 17.46 | 272.62 | 17.16 | 199.29 | −14.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudowicz, J.; Paluszkiewicz, R. MAT: GIS-Based Morphometry Assessment Tools for Concave Landforms. Remote Sens. 2021, 13, 2810. https://doi.org/10.3390/rs13142810
Gudowicz J, Paluszkiewicz R. MAT: GIS-Based Morphometry Assessment Tools for Concave Landforms. Remote Sensing. 2021; 13(14):2810. https://doi.org/10.3390/rs13142810
Chicago/Turabian StyleGudowicz, Joanna, and Renata Paluszkiewicz. 2021. "MAT: GIS-Based Morphometry Assessment Tools for Concave Landforms" Remote Sensing 13, no. 14: 2810. https://doi.org/10.3390/rs13142810
APA StyleGudowicz, J., & Paluszkiewicz, R. (2021). MAT: GIS-Based Morphometry Assessment Tools for Concave Landforms. Remote Sensing, 13(14), 2810. https://doi.org/10.3390/rs13142810