Rigidity Strengthening of Landslide Materials Measured by Seismic Interferometry
Abstract
:1. Introduction
2. Construction of Geological Model
2.1. Background
2.2. Geological Survey, Drill Cores, and Resistivity Profile
3. Monitoring and Measurement Data
3.1. Time-Series Data
3.2. Measurement of Surface Displacement
4. Methods
4.1. Hydrogeological Conceptual Model
4.2. Slope Stability Analysis and Scenario
4.3. Coda Wave Interferometry and Stretching Method
5. Results
5.1. Model Calibration and Groundwater Level Prediction
5.2. Safety Factors and Failure Scenario
5.3. Relative Seismic Velocity Changes
6. Discussion and Conclusions
6.1. Factors Influencing Daily Relative Velocity Changes
6.2. Evidence to Support the Water-Load-Based Compacting Model
6.3. Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caine, N. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris-Flows. Geogr. Ann. 1980, 62, 23–27. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.C. Stark The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flow: An Update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Kuo, H.-L.; Lin, G.-W.; Chen, C.-W.; Saito, H.; Lin, C.-W.; Chen, H.; Chao, W.-A. Evaluating Critical Rainfall Conditions for Large-Scale Landslides by Detecting Event Times from Seismic Records. Nat. Hazards Earth Syst. Sci. 2018, 18, 2877–2891. [Google Scholar] [CrossRef] [Green Version]
- Bozzano, F.; Cherubini, C.; Floris, M.; Lupo, M.; Paccapelo, F. Landslide Phenomena in the Area of Pomarico (Basilicata–Italy): Methods for Modeling and Monitoring. Phys. Chem Earth 2002, 27, 1601–1607. [Google Scholar] [CrossRef]
- Blatz, J.A.; Ferreira, N.J.; Graham, J. Effects of Near-Surface Environmental Conditions on Instability of an Unsaturated Soil Slope. Can. Geotech. J. 2004, 41, 1111–1126. [Google Scholar] [CrossRef]
- Cascini, L.; Gulla, G.; Sorbino, G. Groundwater Modeling of a Weathered Gneissic Cover. Can. Geotech. J. 2006, 43, 1153–1166. [Google Scholar] [CrossRef]
- Chung, M.C.; Tan, C.H.; Chen, C.H. Local Rainfall Thresholds for Forecasting Landslide Occurrence: Taipingshan Landslide Triggered by Typhoon Saola. Landslides 2017, 14, 19–33. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Chen, C.-C.; Chang, S.-K.; Wang, T.-B.; Wang, C.-Y.; Hsu, S.-K. An Investigation into the Debris Flow Induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, Using the Electrical Resistivity Imaging Method. Geophys. J. Int. 2012, 188, 1012–1024. [Google Scholar] [CrossRef] [Green Version]
- Chigira, M.; Hariyama, T.; Yamasaki, S. Development of Deep-Seated Gravitational Slope Deformation on a Shale Dip-Slope Observations from High-Quality Drill Cores. Tectonophysics 2013, 605, 104–113. [Google Scholar] [CrossRef]
- O’Brien, G.A.; Cox, S.C.; Townend, J. Spatially and Temporally Systematic Hydrologic Changes within Large Geoengineered Landslides, Cromwell Gorge, New Zealand, Induced by Multiple Regional Earthquakes. J. Geophys. Res. Solid Earth 2016, 121, 8750–8773. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J.; Lloret, A.; Gili, J.A.; Angeli, M.G.; Pasuto, A.; Silvano, S. Measurement of Landslide Displacements Using a Wire Extensometer. Eng. Geol. 2000, 55, 149–166. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J.; Ledesma, A. Prediction of Ground Displacements and Velocities from Groundwater Level Changes at the Vallcebre Landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Chen, R.-F.; Hsu, Y.-J.; Yu, S.-B.; Chang, K.-J.; Wu, R.-Y.; Hsieh, Y.-C.; Lin, C.-W. Real-Time Monitoring of Deep-Seated Gravitational Slope Deformation in the Taiwan Mountain Belt. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2. [Google Scholar] [CrossRef]
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System Techniques in Landslide Monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chao, W.-A.; Wu, Y.-M.; Zhao, L.; Chen, Y.-G.; Ho, W.-Y.; Lin, T.-L.; Kuo, K.-H.; Zhang, R.-M. A Seismological Study of Landquakes Using a Real-Time Broadband Seismic Network. Geophys. J. Int. 2013, 194, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-M.; Chao, W.-A.; Chen, H.; Kuo, Y.-T.; Yang, C.-M. Locating Rock Slope Failures Along Highways and Understanding Their Physical Processes Using Seismic Signals. Earth Surf. Dyn. 2021, 9, 505–517. [Google Scholar] [CrossRef]
- Allstadt, K. Extracting Source Characteristics and Dynamics of the August 2010 Mount Meager Landslide from Broadband Seismograms. J. Geophys. Res. 2013, 118, 1472–1490. [Google Scholar] [CrossRef]
- Chao, W.A.; Wu, Y.M.; Zhao, L.; Chen, H.; Chen, Y.G.; Chang, J.M.; Lin, C.M. A First Near Real-Time Seismology-Based Landquake Monitoring System. Sci. Rep. 2017, 7, 43510. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Kumagai, H.; Matsushi, Y.; Matsuzawa, T. Dynamic Landslide Processes Revealed by Broadband Seismic Records. Geophys. Res. Lett. 2013, 40, 2998–3002. [Google Scholar] [CrossRef]
- Chao, W.-A.; Zhao, L.; Chen, S.-C.; Wu, Y.-M.; Chen, C.-H.; Huang, H.-H. Seismology-Based Early Identification of Dam-Formation Landquake Events. Sci. Rep. 2016, 5, 19259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekström, G.; Stark, C.P. Simple Scaling of Catastrophic Landslide Dynamics. Science 2013, 339, 1416–1419. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, J.L.; Beroza, G.C. Evidence for Widespread Nonlinear Strong Ground Motion in the Mw 6.9 Loma Prieta Earthquake. Bull. Seismol. Soc. Am. 2004, 94, 1595–1608. [Google Scholar] [CrossRef]
- Brenguier, F.; Campillo, M.; Hadziioannou, C.; Shapiro, N.M.; Nadeau, R.M.; Larose, E. Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science 2008, 321, 1478–1481. [Google Scholar] [CrossRef] [Green Version]
- Sen-Schönfelder, C.; Wegler, U. Passive Image Interferometry and Seasonal Variations of Seismic Velocities at Merapi Volcano, Indonesia. Geophysic. Res. Lett. 2006, 33, L21302. [Google Scholar] [CrossRef]
- Brenguier, F.; Shapiro, N.M.; Campillo, M.; Ferrazzini, V.; Duputel, Z.; Coutant, O.; Nercessian, A. Towards Forecasting Volcanic Eruptions Using Seismic Noise. Nature Geosci. 2008, 1, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Obermann, A.; Kraft, T.; Larose, E.; Wiemer, S. Potential of Ambient Seismic Noise Techniques to Monitor the St. Gallen Geothermal Site (Switzerland). J. Geophys. Res. Solid Earth 2015, 120, 4301–4316. [Google Scholar] [CrossRef]
- Mainsant, G.; Larose, E.; Bronnimann, C.; Jongmans, D.; Michoud, C.; Jaboyedoff, M. Ambient Seismic Noise Monitoring of a Clay Landslide: Toward Failure Prediction. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Snieder, R.; Gret, A.; Douma, H.; Scales, J. Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity. Science 2002, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snieder, R. Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Phys. Rev. E 2004, 69, 046610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.H.; Furumura, T.; Rubinstein, J. Near-Surface Versus Fault Zone Damage Following the 1999 Chi-Chi Earthquake: Observation and Simulation of Repeating Earthquakes. J. Geophys. Res. Solid Earth 2015, 120, 2426–2445. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.-L.; Willett, S.D.; Hu, J.-C.; Horng, M.-J.; Chen, M.-C.; Stark, C.P.; et al. Links between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.-H.; Kao, M.-C. Explanatory Text for the Geologic Map of Taiwan—Zhongpu Sheet, Central Geological Survey; MOEA (Ministry of Economic Affairs): Taiwan, 2009; p. 87. (In Chinese)
- Lee, C.-C.; Yang, C.H.; Liu, H.C.; Wen, K.L.; Wang, Z.B.; Chen, Y.J. A Study of the Hydrogeological Environment of the Lishan Landslide Area Using Resistivity Image Profiling and Borehole Data. Eng. Geol. 2008, 98, 115–125. [Google Scholar] [CrossRef]
- Lin, C.-P.; Tang, S.-H.; Lin, W.-C.; Chung, C.-C. Quantification of Cable Deformation with TDR: Implications to Localized Shear Deformation Monitoring. J. Geotech. Geoenviron. Eng. 2009, 135, 143–152. [Google Scholar] [CrossRef]
- Turner, A.K.; Schuster, L.R. Landslide: Investigation and Mitigation; Special Report 247; TRB, National Research Council: Washington, DC, USA, 1996; Chapter 11; pp. 278–316. [Google Scholar]
- Chung, C.-C.; Lin, C.-P. A Comprehensive Framework of TDR Landslide Monitoring and Early Warning Substantiated by Field Examples. Eng. Geol. 2019, 262, 105330. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the Soil-Water Characteristic Curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Pourkhosravani, A.; Kalantari, B. A Review of Current Methods for Slope Stability Evaluation. Electron. J. Geotech. Eng. 2011, 16, 1245–1254. [Google Scholar]
- Kainthola, A.; Verma, D.; Thareja, R.; Singh, T.N. A Review on Numerical Slope Stability Analysis. Int. J. Sci. Eng. Technol. Res. 2013, 2, 1315–1320. [Google Scholar]
- Gol, M.D.; Keykha, H.A.; Rahnama-Rad, J. Assessment Slope Stability Based on Deformation of Rock Joints and Soil with Simulation Method. Open J. Geol. 2016, 6, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Länsivaara, T.; Poutanen, T. Slope Stability with Partial Safety Factor Method. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Challenges and Innovations in Geotechnics, Paris, France, 2–6 September 2013; pp. 1823–1826. [Google Scholar]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, R.A. The Shear Strength of Unsaturated Soils. Can. Geotech. J. 1978, 12, 313–321. [Google Scholar] [CrossRef]
- SLF/WSL. RAMMS: User Manual v1.5. Avalanche, a Numerical Model for Snow Avalanches in Research and Practice; SLF/WSL: Davos, Switzerland, 2013; 97p. [Google Scholar]
- Voellmy, A. On the Destructive Force of Avalanches; SLF: Davos, Switzerland, 1955; pp. 159–162. [Google Scholar]
- Schimmel, M.; Stutzmann, E.; Gallart, J. Using Instantaneous Phase Coherence for Signal Extraction from Ambient Noise Data at a Local to a Global Scale. Geophys. J. Int. 2010, 184, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Obermann, A.; Planes, T.; Larose, E.; Campillo, M. Imaging Preeruptive and Coeruptive Structural and Mechanical Changes of a Volcano with Ambient Seismic Noise. J. Geophys. Res. Solid Earth 2013, 118, 6285–6294. [Google Scholar] [CrossRef]
- Colombi, A.; Roux, P.; Guenneau, S.; Gueguen, P.; Craster, R.V. Forests as a Natural Seismic Metamaterial: Rayleigh Wave Bandgaps Induced by Local Resonances. Sci. Rep. 2016, 6, 19238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Bancroft, J.C. Amplitude within the Fresnel Zone for the Zero-Offset Case; CREWES Research Report; CREWES: Calgary, AB, Canada, 2002; Volume 14. [Google Scholar]
- Bontemps, N.; Lacroix, P.; Larose, E.; Jara, J.; Taipe, E. Rain and Small Earthquakes Maintain a Slow-Moving Landslide in a Persistent Critical State. Nat. Commun. 2020, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.-C.; Hung, S.-H. Temporal Changes of Seismic Velocity Associated with the 2006 Mw 6.1 Taitung Earthquake in an Arc-Continent Collision Suture Zone. Geophys. Res. Lett. 2012, 39, L12307. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, R.B. Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismol. Res. Lett. 2013, 84, 1081–1088. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.-H.; Chao, W.-A.; Yang, C.-M.; Chung, M.-C.; Kuo, Y.-T.; Yeh, C.-H.; Liu, H.-C.; Lin, C.-H.; Lin, C.-P.; Liao, J.-J.; et al. Rigidity Strengthening of Landslide Materials Measured by Seismic Interferometry. Remote Sens. 2021, 13, 2834. https://doi.org/10.3390/rs13142834
Kang K-H, Chao W-A, Yang C-M, Chung M-C, Kuo Y-T, Yeh C-H, Liu H-C, Lin C-H, Lin C-P, Liao J-J, et al. Rigidity Strengthening of Landslide Materials Measured by Seismic Interferometry. Remote Sensing. 2021; 13(14):2834. https://doi.org/10.3390/rs13142834
Chicago/Turabian StyleKang, Keng-Hao, Wei-An Chao, Che-Ming Yang, Ming-Chien Chung, Yu-Ting Kuo, Chih-Hsiang Yeh, Hsin-Chang Liu, Chun-Hung Lin, Chih-Pin Lin, Jyh-Jong Liao, and et al. 2021. "Rigidity Strengthening of Landslide Materials Measured by Seismic Interferometry" Remote Sensing 13, no. 14: 2834. https://doi.org/10.3390/rs13142834
APA StyleKang, K. -H., Chao, W. -A., Yang, C. -M., Chung, M. -C., Kuo, Y. -T., Yeh, C. -H., Liu, H. -C., Lin, C. -H., Lin, C. -P., Liao, J. -J., Chang, J. -M., Ngui, Y. -J., Chen, C. -H., & Tai, T. -L. (2021). Rigidity Strengthening of Landslide Materials Measured by Seismic Interferometry. Remote Sensing, 13(14), 2834. https://doi.org/10.3390/rs13142834