Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic
Abstract
:1. Introduction
2. Data and Material
2.1. Research Area
2.2. Data
2.2.1. Image Data
2.2.2. Ground Survey Data
3. Technical Approach
3.1. Workflow of the Processing Steps
3.2. Image Preprocessing
C1||C2||C3 = 1
3.3. Rocky Desertification Factors
3.4. Model Construction Method
3.4.1. Logistic Regression Model
3.4.2. Random Forest (RF) Model
3.4.3. Support Vector Machine (SVM) Model
3.4.4. Accuracy Analysis Method
4. Results and Analysis
4.1. Extraction of Rocky Desertification Factors in Guizhou
4.2. Construction and Comparison of Rocky Desertification Models
4.3. Optimization of the Rocky Desertification Estimation Model
4.3.1. Workflow of Model Improvement
4.3.2. Model Optimization Based on Vegetation Types at Different Heights
4.3.3. Extraction and Analysis of Seasonal NDVI-STD
4.3.4. Optimizing the Model by Integrating the Seasonal Phase and Vegetation Height
4.4. Analysis of Spatiotemporal Change in Rocky Desertification
5. Discussion
5.1. Effects of Different Vegetation Types on Rocky Desertification Monitoring
5.2. Effects of Seasonal and Temporal Differences on Rocky Desertification Monitoring
5.3. Mixed Pixels and Scale Effect
5.3.1. Ground Survey Data
5.3.2. MODIS Data
5.3.3. Google Earth Engine
5.4. Spatial Distribution Characteristics of Rocky Desertification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Dai, M.H.; Wang, L.C.; Zeng, C.F.; Su, W.C. The challenge and future of rocky desertification control in karst areas in southwest China. Solid Earth 2016, 7, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Wang, J.; Yue, Y.; Qi, X. How ecological restoration alters ecosystem services: An analysis of vegetation carbon sequestration in the karst area of northwest Guangxi, China. Environ. Earth Sci. 2015, 74, 5307–5317. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, R.; Cui, N.; Yang, J.; Guo, L. The Impact of Urbanization on Ecosystem Health in Typical Karst Areas: A Case Study of Liupanshui City, China. Int. J. Environ. Res. Public Health 2021, 18, 93. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, R.L.; Sun, C.X.; Zhang, D.F.; Li, F.Q.; Zhou, D.Q.; Xiong, K.N.; Zhou, Z.F. How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: Phenomena and mechanisms. Land Degrad. Dev. 2004, 15, 123–131. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Qiu, G.Y.; Mo, D.K.; Lin, H.; Sun, H.; Wang, Q.X.; Zhao, S.H.; Yin, J. Rocky desertification and its causes in karst areas: A case study in Yongshun County, Hunan Province, China. Environ. Geol. 2009, 57, 1481–1488. [Google Scholar] [CrossRef]
- Yuan, D.X. Innovation in the field of karst resources and environment in China. Carsologica Sin. 2015, 34, 98–100. [Google Scholar]
- Chen, Y.H.; Xiong, K.N.; Chi, Y.K. Progress of karst rocky desertification control in South China. Jiangsu Agric. Sci. 2019, 47, 17–21. [Google Scholar]
- Luo, X.L.; Wang, S.J.; Bai, X.Y.; Tan, Q.; Rang, C.; Chen, H.; Xi, H.P.; Chen, F.; Cao, Y.; Wu, L.H. Spatiotemporal evolution of rocky desertification in karst area of Southwest China. Acta Ecol. Sin. 2021, 41, 680–693. [Google Scholar]
- Rang, C.; Bai, X.; Tan, Q.; Luo, X.; Chen, H.; Xi, H. Response of the landscape pattern of rocky desertification to land use change in Typical Karst Area. Acta Ecol. Sin. 2018, 38, 8901–8910. [Google Scholar]
- Tang, J.; Tang, X.; Qin, Y.; He, Q.; Yi, Y.; Ji, Z. Karst rocky desertification progress: Soil calcium as a possible driving force. Sci. Total Environ. 2019, 649, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.Y.; Wang, S.J.; Bai, X.Y.; Zhou, D.Q.; Tian, Y.C.; Li, Q.; Qian, Q.Q.; Chen, F.; Zeng, C. Temporal and spatial changes of vegetation in key karst zones and its driving factors. Acta Ecol. Sin. 2018, 38, 8799–8812. [Google Scholar]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Ying, B.; Xiao, S.Z.; Xiong, K.N.; Cheng, Q.W.; Luo, J.S. Comparative studies of the distribution characteristics of rocky desertification and land use/land cover classes in typical areas of Guizhou province, China. Environ. Earth Sci. 2014, 71, 631–645. [Google Scholar] [CrossRef]
- Chen, F.; Wang, S.; Bai, X.; Liu, F.; Zhou, D.; Tian, Y.; Luo, G.; Li, Q.; Wu, L. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 2021, 36, 262–280. [Google Scholar] [CrossRef]
- Kim, J.W.; Lu, Z.; Kaufmann, J. Evolution of sinkholes over Wink, Texas, observed by high-resolution optical, and SAR imagery. Remote Sens. Environ. 2019, 222, 119–132. [Google Scholar] [CrossRef]
- Yin, C.; Zhou, Z.F.; Tan, W.Y.; Wang, P.; Feng, Q. Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing. J. Infrared Millim. Waves 2018, 37, 360–370. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Zhang, C.; Chen, H.; Liu, H.; Yue, Y.; Luffman, I.; Qi, X. Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China. Environ. Earth Sci. 2011, 62, 69–76. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Zhen, L.; Li, H. Spatial distribution characteristics of rocky desertification in Qiandongnan Prefecture of Guizhou Province. J. Resour. Ecol. 2017, 8, 422–432. [Google Scholar]
- Mokhtar, A.; He, H.; Alsafadi, K.; Li, Y.; Zhao, H.; Keo, S.; Bai, C.; Abuarab, M.; Zhang, C.; Elbagoury, K.; et al. Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China. Environ. Earth Sci. 2020, 79, 312. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, S.; Bai, X.; Tian, Y.; Wu, L.; Xiao, J.; Chen, F.; Qian, Q.J. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep. 2018, 8, 641. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Zhou, Y. Factors influencing the evolution of human-driven rocky desertification in karst areas. Land Degrad. Dev. 2021, 32, 817–829. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Xiong, K.; Zhou, D. Correlation between Rocky Desertification and Slope Degree in Karst Area of Guizhou. Bull. Soil Water Conserv. 2006, 4, 82–86. [Google Scholar]
- Su, C.; Yue, T.; Jiang, L.; Li, X.; Wang, W. Karst Rocky Desertification Information Extraction Based on the Decision Tree. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 367–373. [Google Scholar] [CrossRef] [Green Version]
- You, H. Orienting rocky desertification towards sustainable land use: An advanced remote sensing tool to guide the conservation policy. Land Use Policy 2017, 61, 171–184. [Google Scholar] [CrossRef]
- Zhao, L.P. Spatiotemporal Evolution Characteristics of Rocky Desertification in Karst Area Based on MODIS Data. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Zhang, J.; Liu, M.; Liu, X.; Luo, W.; Wu, L.; Zhu, L. Spectral analysis of seasonal rock and vegetation changes for detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102337. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing Remote Sensing Methods for Monitoring Karst Rocky Desertification at Sub-pixel Scales in a Highly Heterogeneous Karst Region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Du, F.; Zuo, L.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2020, 36, 2113–2133. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, Z.; Yuan, D.; Ma, Z.; Xie, Y. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China. Environ. Earth Sci. 2014, 72, 4483–4489. [Google Scholar] [CrossRef]
- Liao, C.; Yue, Y.; Wang, K.; Fensholt, R.; Tong, X.; Brandt, M. Ecological restoration enhances ecosystem health in the karst regions of southwest China. Ecol. Indic. 2018, 90, 416–425. [Google Scholar] [CrossRef]
- Huang, Q.H.; Cai, Y.L.; Xing, X.S. The control of rocky desertification and regional sustainable development in Karst Mountainous Areas in Southwest China. Ambio 2008, 37, 372–374. [Google Scholar] [CrossRef]
- Cheng, A.Y.; Wang, S.J.; Li, Y.B.; Bai, X.Y.; Ni, X.B. Study on the historical evolution of Karst Rocky Desertification in Guizhou Province and its significance. Bull. Soil Water Conserv. 2010, 30, 15–23. [Google Scholar]
- Liu, L.C.; Xiong, K.N.; Luo, Y. Advances in Evaluation of Sustainable Development Capability in Karst Region. Guizhou Agric. Sci. 2012, 40, 67–72. [Google Scholar]
- Yuan, Y.L.; Lian, B.; An, Y.L.; Tang, Y.; Wang, S.J.; Yi, Z.Y. Ecological environment protection and sustainable development in Karst Area. Earth Environ. 2013, 41, 388–397. [Google Scholar]
- Xiong, K.N. A Typical Study on Karst Rocky Desertification Based on Remote Sensing and GIS: A Case Study of Guizhou Province; Geological Publishing House: Beijing, China, 2002; pp. 17–44. [Google Scholar]
- Xiong, K.N.; Liu, L.C.; Luo, Y. The Evaluation Studies Progress and Prospects of Sustainable Development in Rocky Desertification Reegion. Ecol. Econ. 2012, 1, 44–49. [Google Scholar]
- Wu, L.L.; Guan, Y.L.; Li, J.W.; Yuan, C.X.; Li, R. Study on Karst Rocky Desertification Based on MODIS Image—A case study of Guizhou Province. Remote Sens. Land Resour. 2019, 31, 235–242. [Google Scholar]
- Ma, S.B.; Yang, G.B.; An, Y.L.; Zhang, Y.R. Vegetation degradation and attribution in Guizhou Province Based on MODIS NDVI. Carsologica Sin. 2019, 38, 227–232. [Google Scholar]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.Z.; Xu, X.L.; Zhang, R.F.; Liu, M.X. MODIS-driven estimation of regional evapotranspiration in Karst area of Southwest China based on the Penman-Monteith-Leuning algorithm. J. Appl. Ecol. 2018, 29, 1617–1625. [Google Scholar] [CrossRef]
- Zhu, L.F. Spatiotemporal Variation of Vegetation Coverage and Rocky Desertification Monitoring Based on MODIS Data. Ph.D. Dissertation, Southwest University, Chongqing, China, 2018. [Google Scholar]
- Earth Engine Code Editor. Available online: https://code.earthengine.google.com/ (accessed on 18 January 2021).
- Google Earth Engine. Available online: https://developers.google.com/earth-engine/datasets/catalog/modis (accessed on 18 January 2021).
- Xie, X.K.; Wang, Q.L.; Dai, L.M.; Su, D.K.; Wang, X.C.; Qi, G.; Ye, Y.J. Application of China’s National Forest Continuous Inventory Database. Environ. Manag. 2011, 48, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.S.; Erkki, T.; Sean, P.; Klaus, V. The national forest inventory in China: History—Results—International context. For. Ecosyst. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, M.Y.; Iizuka, K.; Liu, J.; Chen, K.; Li, Y.C. Effects of Forest Canopy Structure on Forest Aboveground Biomass Estimation Using Landsat Imagery. IEEE Access 2020, 9, 5285–5295. [Google Scholar] [CrossRef]
- Forest Resources Management Department. Technical Regulations of National Forest Resources Continuous Inventory; China Forestry Administration: Beijing, China, 2014; pp. 54–86. [Google Scholar]
- Li, Y.B.; Wang, S.J.; Cheng, A.Y.; Li, W.H. Study on evaluation method of regional rocky desertification: A case study of Panxian county. Earth Environ. 2009, 37, 275–279. [Google Scholar]
- MODIS Web. Available online: https://modis.gsfc.nasa.gov/ (accessed on 18 January 2021).
- Li, M.M. Study on Remote Sensing Estimation Method of Vegetation Coverage. Master’s Thesis, Institute of Remote Sensing Applications Chinese Academy of Sciences, Beijing, China, 2003. [Google Scholar]
- Zhang, X.L. Study on Comprehensive Application Technology of Remote Sensing Monitoring of Rocky Desertification in Southeast Yunnan. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2013. [Google Scholar]
- Sun, F.D. Dynamic Remote Sensing Monitoring of the Main Lakes in China from 2000 to 2010. Ph.D. Dissertation, Nanjing University, Nanjing, China, 2013. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Roberts, D.A. A Comparison of Methods for Monitoring Multitemporal Vegetation Change Using Thematic Mapper Imagery. Remote Sens. Environ. 2002, 80, 143–156. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016; pp. 55–87. [Google Scholar]
- Du, P.J. Remote Sensing Multi Classifier Ensemble Method and Its Application; Science Press: Beijing, China, 2019; pp. 35–67. [Google Scholar]
- Wang, Y.Y. Study on the Extraction of Rocky Desertification Information and the Geological Driving Factors Based on Multi-Source Data. Master’s Thesis, Guizhou University, Guizhou, China, 2019. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Warrens, M.J. Properties of the quantity disagreement and the allocation disagreement. Int. J. Remote Sens. 2015, 36, 1439–1446. [Google Scholar] [CrossRef]
- Xi, H.P.; Wang, S.J.; Bai, X.Y.; Wu, L.H.; Tang, H.; Chen, F.; Xiao, J.Y.; Wang, M.M.; Cao, Y.; Chen, H.; et al. Spatiotemporal evolution characteristics of rocky desertification in typical karst areas of Southwest China: A case study of Puding county, Guizhou Province. Acta Ecol. Sin. 2018, 38, 8919–8933. [Google Scholar]
- Xu, E.Q. Description of Karst Rocky Desertification Evolution Process and Information Mining Technology; Science Press: Beijing, China, 2020; pp. 45–66. [Google Scholar]
- Li, Y.B.; Li, W.H.; Wang, S.J.; Luo, G.J.; Chen, A.Y. Dynamic behavior characteristics and classification evaluation of rocky desertification patches. Prog. Geogr. 2010, 29, 335–341. [Google Scholar]
- Yan, N.Z.; Li, Y.B. Analysis on the distribution characteristics and influencing factors of rocky desertification landscape pattern—A case study of Pan County, Guizhou Province. Carsologica Sin. 2008, 3, 255–260. [Google Scholar]
- Bai, X.Y.; Wang, S.J.; Chen, Q.W.; Cheng, A.Y.; Ni, X.B. Spatiotemporal evolution and evaluation of rocky desertification types in Guizhou Province. Acta Geogr. Sin. 2009, 64, 609–618. [Google Scholar]
- Wang, P.B.; An, Y.L. Spatial and temporal characteristics of rocky desertification in Guizhou karst area from 2000 to 2010. J. Guizhou Norm. Univ. (Nat. Sci. Ed.) 2014, 32, 10–15, 46. [Google Scholar]
- Xiong, X.; Li, J.H.; Zhang, T.; Wang, S.N.; Huo, W.J. Simulation of coupled transport of soil moisture and heat in a typical karst rocky desertification area, Yunnan Province, Southwest China. Environ. Sci. Pollut. Res. 2021, 28, 4716–4730. [Google Scholar] [CrossRef]
- Fan, Z.; Li, S.; Fang, H.J. Explicitly identifying the desertification change in CMREC area based on multisource remote data. Remote Sens. 2020, 12, 3170. [Google Scholar] [CrossRef]
- Pu, J.; Zhao, X.; Dong, P.; Wang, Q.; Yue, Q.J. Extracting Information on Rocky Desertification from Satellite Images: A Comparative Study. Remote Sens. 2021, 13, 2497. [Google Scholar] [CrossRef]
- Li, L.; Xiong, K.N. Study on peak cluster-depression rocky desertification landscape evolution and human activity-influence in South of China. Eur. J. Remote Sens. 2021, 54, 309–317. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Zhou, T. Human driving forces: Analysis of rocky desertification in karst region in Guanling County, Guizhou Province. Chin. Geogr. Sci. 2011, 21, 92–100. [Google Scholar] [CrossRef]
Index | Formula | Reference |
---|---|---|
FVC | Li, M. M, 2003 [52] | |
RE | Zhang, X.L, 2013 [53]; Sun, F. D, 2013 [54] | |
NDBI | Zha, et al., 2003 [55] | |
LSTD | MOD11A1 | |
HD | Rogan, J. et al., 2002 [56] | |
AD | --- | MCD43A3 |
ET | --- | MOD16A2 |
EL | --- | DEM |
Model | Level | NRD | PRD | LRD | MRD | SRD | Total | UA |
---|---|---|---|---|---|---|---|---|
logical linear regression | NRD | 406 | 82 | 41 | 20 | 7 | 556 | 0.730 |
PRD | 42 | 198 | 23 | 9 | 4 | 276 | 0.717 | |
LRD | 8 | 9 | 98 | 10 | 3 | 128 | 0.766 | |
MRD | 3 | 3 | 6 | 52 | 2 | 66 | 0.788 | |
SRD | 0 | 0 | 1 | 4 | 22 | 27 | 0.815 | |
Total | 460 | 293 | 170 | 96 | 38 | 1053 | ||
PA | 0.885 | 0.678 | 0.580 | 0.547 | 0.579 | |||
random forest | NRD | 427 | 67 | 36 | 18 | 8 | 556 | 0.768 |
PRD | 30 | 218 | 18 | 6 | 4 | 276 | 0.790 | |
LRD | 7 | 8 | 105 | 5 | 3 | 128 | 0.820 | |
MRD | 5 | 3 | 5 | 51 | 2 | 66 | 0.773 | |
SRD | 1 | 0 | 1 | 3 | 22 | 27 | 0.815 | |
Total | 470 | 296 | 165 | 83 | 39 | 1053 | ||
PA | 0.909 | 0.736 | 0.636 | 0.614 | 0.564 | |||
SVM | NRD | 443 | 62 | 32 | 14 | 5 | 556 | 0.797 |
PRD | 28 | 219 | 18 | 9 | 2 | 276 | 0.793 | |
LRD | 7 | 5 | 108 | 5 | 3 | 128 | 0.844 | |
MRD | 3 | 2 | 3 | 56 | 2 | 66 | 0.848 | |
SRD | 0 | 1 | 1 | 2 | 23 | 27 | 0.852 | |
Total | 481 | 289 | 162 | 86 | 35 | 1053 | ||
PA | 0.921 | 0.758 | 0.667 | 0.651 | 0.657 |
Method | OA (Overall Accuracy) | QD (Quantity Disagreement) | AD (Allocation Disagreement) | Kappa |
---|---|---|---|---|
LR(Linear Regression) | 0.737 | 0.092 | 0.171 | 0.608 |
RF(Random Forest) | 0.782 | 0.082 | 0.137 | 0.672 |
SVM | 0.806 | 0.071 | 0.123 | 0.707 |
Vertical Height Level | Land Cover Type |
---|---|
High/Medium trees | Evergreen/deciduous needleleaf/broadleaf forests, and mixed forests |
Low shrubs | Open/closed shrublands, woody savannas, savannas, grasslands, and croplands/natural vegetation mosaics |
Other(Masked) | Permanent wetlands, cropland, urban and built-up lands, water bodies, etc. |
Level | NRD | PRD | LRD | MRD | SRD | Total | User Accuracy |
---|---|---|---|---|---|---|---|
NRD | 503 | 36 | 10 | 5 | 2 | 556 | 0.901 |
PRD | 14 | 253 | 5 | 3 | 1 | 276 | 0.917 |
LRD | 4 | 2 | 121 | 1 | 0 | 128 | 0.945 |
MRD | 4 | 1 | 2 | 58 | 1 | 66 | 0.879 |
SRD | 0 | 0 | 1 | 2 | 24 | 27 | 0.889 |
Total | 525 | 292 | 139 | 69 | 28 | 1053 | 0.911 |
Production Accuracy | 0.958 | 0.866 | 0.871 | 0.841 | 0.857 |
Method | OA | QD | AD | Kappa |
---|---|---|---|---|
SVM | 0.806 | 0.071 | 0.123 | 0.707 |
CM (SVM+ vegetation type) | 0.864 | 0.064 | 0.072 | 0.793 |
CPM (SVM+ vegetation type+ seasonal phase) | 0.911 | 0.029 | 0.060 | 0.861 |
Year | SRD | MRD | LRD | PRD | NRD | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (103 km2) | Rate (%) | Area (103 km2) | Rate (%) | Area (103 km2) | Rate (%) | Area (103 km2) | Rate (%) | Area (103 km2) | Rate (%) | |
2001 | 5.391 | 3.06 | 13.565 | 7.70 | 24.751 | 14.05 | 46.385 | 26.33 | 86.075 | 48.86 |
2005 | 5.444 | 3.09 | 13.318 | 7.56 | 22.585 | 12.82 | 43.408 | 24.64 | 91.413 | 51.89 |
2010 | 4.263 | 2.42 | 10.517 | 5.97 | 21.246 | 12.06 | 45.698 | 25.94 | 94.443 | 53.61 |
2015 | 3.101 | 1.76 | 8.720 | 4.95 | 18.427 | 10.46 | 45.293 | 25.71 | 100.627 | 57.12 |
2019 | 2.325 | 1.32 | 6.888 | 3.91 | 14.939 | 8.48 | 41.012 | 23.28 | 111.003 | 63.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Qiang, H.; Wang, F.; Li, M. Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic. Remote Sens. 2021, 13, 2935. https://doi.org/10.3390/rs13152935
Qian C, Qiang H, Wang F, Li M. Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic. Remote Sensing. 2021; 13(15):2935. https://doi.org/10.3390/rs13152935
Chicago/Turabian StyleQian, Chunhua, Hequn Qiang, Feng Wang, and Mingyang Li. 2021. "Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic" Remote Sensing 13, no. 15: 2935. https://doi.org/10.3390/rs13152935
APA StyleQian, C., Qiang, H., Wang, F., & Li, M. (2021). Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic. Remote Sensing, 13(15), 2935. https://doi.org/10.3390/rs13152935