Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation and Modeling Process of the Tropospheric Delay
2.2. The Modified Tropospheric Interpolation Algorithm
3. Results
3.1. Experimental Data
3.2. Analysis of Tropospheric Delay Interpolation Results with Dataset One
3.3. Analysis of the Tropospheric Delay Interpolation Results with Dataset Two
3.4. Comparison of the Positioning Results of Dataset One and Dataset Two
3.4.1. Dataset One
3.4.2. Dataset Two
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanninger, L. Virtual reference stations (VRS). GPS Solut. 2003, 7, 143–144. [Google Scholar] [CrossRef]
- Bakuła, M.; Przestrzelski, P.; Kaźmierczak, R. Reliable technology of centimeter GPS/GLONASS surveying in forest environments. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1029–1038. [Google Scholar] [CrossRef]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Meas. Sci. Technol. 2018, 29, 035002. [Google Scholar] [CrossRef]
- Hu, G.R.; Khoo, H.S.; Goh, P.C.; Law, C.L. Development and assessment of GPS virtual reference stations for RTK positioning. J. Geod. 2003, 77, 292–302. [Google Scholar] [CrossRef]
- Chen, X.; Han, S.; Rizos, C.; Goh, P.C. Improving real time positioning efficiency using the Singapore integrated multiple reference station network (SIMRSN). In Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000. [Google Scholar]
- Wanninger, L. Improved ambiguity resolution by regional differential modelling of the ionosphere. In Proceedings of the 8th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1995), Palm Springs, CA, USA, 12–15 September 1995. [Google Scholar]
- Wanninger, L. The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), Nashville, TN, USA, 14–17 September 1999. [Google Scholar]
- Han, S.; Rizos, C. GPS network design and error mitigation for real-time continuous array monitoring systems. In Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), Kansas City, MO, USA, 17–20 September 1996. [Google Scholar]
- Gao, Y.; Li, Z.; McLellan, J. Carrier phase based regional area differential GPS for decimeter-level positioning and navigation. In Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997), Kansas City, MO, USA, 16–19 September 1997. [Google Scholar]
- Wübbena, G.; Bagge, A.; Seeber, G.; Böder, V.; Hankemeier, P. Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks. In Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), Kansas City, MO, USA, 17–20 September 1996. [Google Scholar]
- Odijk, D.; Marel, H.V.D.; Song, I. Precise GPS Positioning by Applying Ionospheric Corrections from an Active Control Network. GPS Solut. 2000, 3, 49–57. [Google Scholar] [CrossRef]
- Marel, H.V. Virtual GPS reference stations in the Netherlands. In Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998), Nashville, TN, USA, 15–18 September 1998. [Google Scholar]
- Odijk, D. Fast precise GPS positioning in the presence of ionospheric delays. Publ. Geod. 2002, 52. [Google Scholar]
- Dai, L.; Han, S.; Wang, J.; Rizos, C. Comparison of interpolation algorithms in network-based GPS techniques. NAVIGATION J. Inst. Navig. 2003, 50, 277–293. [Google Scholar] [CrossRef]
- Fotopoulos, G.; Cannon, M. An overview of multi-reference station methods for cm-level positioning. GPS Solut. 2001, 4, 1–10. [Google Scholar] [CrossRef]
- Wu, S. Performance of regional atmospheric error models for NRTK in GPSnet and the implementation of a NRTK system. RMIT Univ. Aust. 2009. [Google Scholar]
- Al-Shaery, A.; Lim, S.; Rizos, C. Investigation of different interpolation models used in Network-RTK for the virtual reference station technique. J. Glob. Position. Syst. 2011, 10, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Liu, L.; Yao, C. A zenith tropospheric delay correction model based on the regional CORS network. Geod. Geodyn. 2012, 3, 53–62. [Google Scholar]
- Wielgosz, P.; Cellmer, S.; Rzepecka, Z.; Paziewski, J.; Grejner-Brzezinska, D.A. Troposphere modeling for precise GPS rapid static positioning in mountainous areas. Meas. Sci. Technol. 2011, 22, 045101. [Google Scholar] [CrossRef]
- Yin, H.; Huang, D.; Xiong, Y. Regional tropospheric delay modeling based on GPS reference station network. In VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Landau, H.; Vollath, U.; Chen, X. Virtual reference stations versus broadcast solutions in network RTK–advantages and limitations. In Proceedings of the GNSS, Graz, Austria, 22–24 April 2003. [Google Scholar]
- Wu, B.; Gao, C.; Pan, S.; Deng, J.; Gao, W. Regional modeling of atmosphere delay in network rtk based on multiple reference station and precision analysis. In Proceedings of the China Satellite Navigation Conference (CSNC) 2015 Proceedings, Xi'an, China, 13–15 May 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume II. [Google Scholar]
- Lei, Q.; Lei, L.; Zemin, W. An tropospheric delay model for GPS NET RTK. In Proceedings of the 2010 Second International Conference on Information Technology and Computer Science, Kiev, Ukraine, 24–25 July 2010. [Google Scholar]
- Hu, G.; Abbey, D.A.; Castleden, N.; Featherstone, W.E.; Earls, C.; Ovstedal, O.; Weihing, D. An approach for instantaneous ambiguity resolution for medium-to long-range multiple reference station networks. GPS Solut. 2005, 9, 1–11. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric effects on GPS. Glob. Position. Syst. Theory Appl. 1991, 1, 517–546. [Google Scholar]
- Vstedal, O. Absolute Positioning with Single-Frequency GPS Receivers. GPS Solut. 2002, 5, 33–44. [Google Scholar] [CrossRef]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solut. 2008, 12, 65–70. [Google Scholar] [CrossRef]
- Niell, A.E. Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths. J. Geophys. Res. Solid Earth 1996, 101, 3227–3246. [Google Scholar] [CrossRef]
- Zhang, J.; Lachapelle, G. Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. J. Geod. 2001, 75, 255–266. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. The least-square ambiguity decorrelation adjustment: A method for fast GPS ambiguity estimation. J. Geod. 1995, 70, 1–2. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.; Xu, C.; Peng, W.; Wan, Y. Establishment of a Real-Time Local Tropospheric Fusion Model. Remote Sens. 2019, 11, 1321. [Google Scholar] [CrossRef] [Green Version]
- Bartels, J. The technique of scaling indices K and Q of geomagnetic activity. Ann. Intern. Geophys. 1957, 4, 215–226. [Google Scholar]
- Mireault, Y.; Tétreault, P.; Lahaye, F.; Héroux, P.; Kouba, J. Online precise point positioning. GPS World 2008, 19, 59–64. [Google Scholar]
- Guo, Q. Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solut. 2015, 19, 537–544. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, G.; Ou, J.; Liu, G.; Wang, S.; Guo, A. MG-APP: An open-source software for multi-GNSS precise point positioning and application analysis. GPS Solut. 2020, 24, 1–13. [Google Scholar] [CrossRef]
Station ID | P478 | EWPP | P603 | P225 | WINT | P121 | |
---|---|---|---|---|---|---|---|
TLIM RMS (m) | 0.024 | 0.033 | 0.076 | 0.041 | 0.058 | 0.012 | |
MLIM RMS (m) | 0.003 | 0.004 | 0.008 | 0.006 | 0.007 | 0.004 | |
Improvement (%) | 87.5 | 87.9 | 89.5 | 85.4 | 87.9 | 66.7 |
Station ID | P532 | P539 | P602 | MASW | |
---|---|---|---|---|---|
TLIM RMS (m) | 0.012 | 0.033 | 0.035 | 0.026 | |
MLIM RMS (m) | 0.005 | 0.008 | 0.010 | 0.007 | |
Improvement (%) | 58.3 | 75.6 | 71.4 | 73.1 |
Accuracy (cm) | |||||
---|---|---|---|---|---|
Station ID | E | N | U | ||
P478 | RMS | TLIM | 0.74 | 0.93 | 11.59 |
MLIM | 0.63 | 0.76 | 3.42 | ||
EWPP | RMS | TLIM | 0.91 | 1.05 | 12.91 |
MLIM | 0.79 | 0.89 | 2.67 | ||
P603 | RMS | TLIM | 1.35 | 1.76 | 24.95 |
MLIM | 0.94 | 1.05 | 4.24 | ||
P225 | RMS | TLIM | 0.85 | 1.08 | 12.34 |
MLIM | 0.75 | 0.79 | 1.96 | ||
WINT | RMS | TLIM | 0.96 | 1.21 | 13.36 |
MLIM | 0.87 | 0.72 | 4.32 | ||
P121 | RMS | TLIM | 0.76 | 1.07 | 4.42 |
MLIM | 0.78 | 1.07 | 2.65 |
Accuracy (cm) | |||||
---|---|---|---|---|---|
Station ID | E | N | U | ||
P532 | RMS | TLIM | 0.74 | 0.74 | 6.91 |
MLIM | 0.77 | 0.64 | 1.44 | ||
P539 | RMS | TLIM | 0.93 | 1.13 | 16.05 |
MLIM | 0.83 | 0.84 | 3.28 | ||
P602 | RMS | TLIM | 0.77 | 1.03 | 17.22 |
MLIM | 0.67 | 0.77 | 4.01 | ||
MASW | RMS | TLIM | 0.80 | 0.85 | 14.04 |
MLIM | 0.67 | 0.76 | 2.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Y.; Song, M.; Yuan, Y. Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference. Remote Sens. 2021, 13, 2994. https://doi.org/10.3390/rs13152994
Pu Y, Song M, Yuan Y. Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference. Remote Sensing. 2021; 13(15):2994. https://doi.org/10.3390/rs13152994
Chicago/Turabian StylePu, Yakun, Min Song, and Yunbin Yuan. 2021. "Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference" Remote Sensing 13, no. 15: 2994. https://doi.org/10.3390/rs13152994
APA StylePu, Y., Song, M., & Yuan, Y. (2021). Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference. Remote Sensing, 13(15), 2994. https://doi.org/10.3390/rs13152994