Optical Classification of Lower Amazon Waters Based on In Situ Data and Sentinel-3 Ocean and Land Color Instrument Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.2.1. Above Water Radiometry
2.2.2. Bio-Optical Measurements
Light Absorption by Particulate Matter
Light Absorption by Colored Dissolved Organic Matter
Chlorophyll-a Concentration
Suspended Particulate Matter Concentration
2.3. In Situ Rrs Classification
2.3.1. Spectra Normalization
2.3.2. Optical Water Type Identification
2.4. Satellite Data
2.4.1. Satellite Rrs(λ) Classification
2.4.2. Satellite Pixels Labelling
3. Results
3.1. General Bio-Optical Characterization of the Lower Amazon Region
3.2. Seasonal Absorption Budget
3.3. Optical Classification
4. Discussion
4.1. CDOM Absorption
4.2. Particulate Matter Absorption
4.3. Differences among the Optical Water Types of the Lower Amazon Region
4.4. Seasonal Distribution of OWT at the Lower Amazon Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valerio, A.D.M.; Kampel, M.; Vantrepotte, V.; Ward, N.D.; Sawakuchi, H.O.; Less, D.F.D.S.; Neu, V.; Cunha, A.; Richey, J. Using CDOM optical properties for estimating DOC concentrations and pCO2 in the Lower Amazon River. Opt. Express 2018, 26, A657–A677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, N.D.; Bianchi, T.; Medeiros, P.M.; Seidel, M.; Richey, J.E.; Keil, R.G.; Sawakuchi, H.O. Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Xenopoulos, M.A.; Downing, J.A.; Kumar, M.D.; Menden-Deuer, S.; Voss, M. Headwaters to oceans: Ecological and biogeochemical contrasts across the aquatic continuum. Limnol. Oceanogr. 2017, 62, S3–S14. [Google Scholar] [CrossRef]
- Tyler, A.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, S.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote. Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.R.; Yang, X.; Topp, S.N.; Ross, M.R.V.; Altenau, E.H.; Pavelsky, T.M. The Color of Rivers. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Preisendorfer, R.W. Hydrological Optics; US Department of Commerce, National Oceanic and Atmospheric Administration: Silver Spring, MA, USA, 1976; Volume 1.
- Prieur, L.; Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Sathyendranath, S. Reports of the International Ocean-Colour Coordinating Group. IOCCG 2000, 3, 140. [Google Scholar]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyll-specific absorption coefficients of natural phyto-plankton: Analysis and parameterization. J. Geophys. Res. 1995, 100, 13321. [Google Scholar] [CrossRef]
- Babin, M.; Stramski, D.; Ferrari, G.M.; Claustre, H.; Bricaud, A.; Obolensky, G.; Hoepffner, N. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.; Tyler, A. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Martinez, J.-M.; Espinoza-Villar, R.; Armijos, E.; Moreira, L.S. The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter. J. Geophys. Res. Earth Surf. 2015, 120, 1274–1287. [Google Scholar] [CrossRef]
- Binding, C.; Jerome, J.; Bukata, R.; Booty, W. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sens. Environ. 2008, 112, 1702–1711. [Google Scholar] [CrossRef]
- Riddick, C.A.L.; Hunter, P.D.; Tyler, A.N.; Martinez-Vicente, V.; Horváth, H.; Kovacs, A.W.; Vörös, L.; Preston, T.; Présing, M. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake. J. Geophys. Res. Ocean. 2015, 120, 7040–7066. [Google Scholar] [CrossRef] [Green Version]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Helms, J.; Stubbins, A.; Ritchie, J.D.; Minor, E.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Sioli, H. The Amazon. In Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin; Springer: Cham, Switzerland, 1984; Volume 56, ISBN 9789400965447. [Google Scholar]
- Jerlov, N.G. Marine Optics; Elsevier: New York, NY, USA, 1976; Volume 14, ISBN 9780444414908. [Google Scholar]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 2017, 63, 846–870. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Verdu, A.R. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mériaux, X. Optical classification of contrasted coastal waters. Remote Sens. Environ. 2012, 123, 306–323. [Google Scholar] [CrossRef]
- Lubac, B.; Loisel, H. Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea. Remote Sens. Environ. 2007, 110, 45–58. [Google Scholar] [CrossRef]
- Da Silva, E.F.F.; Novo, E.M.L.D.M.; Lobo, F.D.L.; Barbosa, C.C.F.; Noernberg, M.A.; Rotta, L.H.D.S.; Cairo, C.T.; Maciel, D.; Júnior, R.F. Optical water types found in Brazilian waters. Limnology 2020, 22, 57–68. [Google Scholar] [CrossRef]
- Kosuth, P.; Callède, J.; Laraque, A.; Filizola, N.; Guyot, J.L.; Seyler, P.; Fritsch, J.M.; Guimarães, V. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrol. Process. 2009, 23, 3141–3150. [Google Scholar] [CrossRef]
- European Space Agency—ESA. Sentinel-3 OLCI Technical Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci (accessed on 15 April 2021).
- Tarpanelli, A.; Iodice, F.; Brocca, L.; Restano, M.; Benveniste, J. River Flow Monitoring by Sentinel-3 OLCI and MODIS: Comparison and Combination. Remote Sens. 2020, 12, 3867. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Bi, S.; Li, Y.; Wang, Q.; Lyu, H.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; Lei, S.; et al. Inland Water Atmospheric Correction Based on Turbidity Classification Using OLCI and SLSTR Synergistic Observations. Remote Sens. 2018, 10, 1002. [Google Scholar] [CrossRef] [Green Version]
- Eleveld, M.A.; Ruescas, A.B.; Hommersom, A.; Moore, T.S.; Peters, S.W.M.; Brockmann, C. An Optical Classification Tool for Global Lake Waters. Remote Sens. 2017, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Mertes, L.A.K.; Magadzire, T.T. Large Rivers from Space. In Large Rivers: Geomorphology and Management; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 535–552. ISBN 9780470849873. [Google Scholar]
- Martinez, J.-M.; Bourgoin, L.M.; Kosuth, P.; Seyler, F.; Guyot, J.L. Analysis of multitemporal MODIS and landsat 7 images acquired over amazonian floodplains lakes for suspended sediment concentrations retrieval. Int. Geosci. Remote Sens. Symp. 2004, 3, 2122–2124. [Google Scholar] [CrossRef]
- Sawakuchi, H.O.; Neu, V.; Ward, N.D.; Barros, M.D.L.C.; Valerio, A.M.; Gagne-Maynard, W.; Cunha, A.; Less, D.F.S.; Diniz, J.E.M.; Brito, D.; et al. Carbon Dioxide Emissions along the Lower Amazon River. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.D.; Krusche, A.; Sawakuchi, H.O.; Brito, D.; Cunha, A.; Moura, J.M.S.; da Silva, R.; Yager, P.; Keil, R.G.; Richey, J.E. The compositional evolution of dissolved and particulate organic matter along the lower Amazon River—Óbidos to the ocean. Mar. Chem. 2015, 177, 244–256. [Google Scholar] [CrossRef]
- Birkett, C.M. Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands. Water Resour. Res. 1998, 34, 1223–1239. [Google Scholar] [CrossRef]
- Ferraz, L.A.D.C. Tidal and Current Prediction for the Amazon’s North Channel Using a Hydrodynamical-Numerical Model. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 1975. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.D.; Sawakuchi, H.O.; Neu, V.; Less, D.; Valerio, A.M.; Cunha, A.C.; Kampel, M.; Bianchi, T.S.; Krusche, A.V.; Richey, J.E.; et al. Velocity-amplified microbial respiration rates in the lower Amazon River. Limnol. Oceanogr. Lett. 2018, 3, 265–274. [Google Scholar] [CrossRef]
- Valerio, A.M.; Kampel, M.; Ward, N.D.; Sawakuchi, H.O.; Cunha, A.C.; Richey, J.E. CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data. Cont. Shelf Res. 2021, 215, 104348. [Google Scholar] [CrossRef]
- A Marengo, J.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Clim. 2015, 36, 1033–1050. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Marengo, J.A.; Ronchail, J.; Carpio, J.M.; Flores, L.N.; Guyot, J.L. The extreme 2014 flood in south-western Amazon basin: The role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 2014, 9, 124007. [Google Scholar] [CrossRef]
- Satyamurty, P.; Da Costa, C.P.W.; Manzi, A.O.; Candido, L.A. A quick look at the 2012 record flood in the Amazon Basin. Geophys. Res. Lett. 2013, 40, 1396–1401. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.S.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Van Der Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Ruddick, K.G.; De Cauwer, V.; Park, Y.-J.; Moore, G. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.; De Cauwer, V.; Mol, B. Van Use of the near infrared similarity reflectance spectrum for the quality control of remote sensing data. Remote Sens. Coast. Ocean. Environ. 2005, 588501. [Google Scholar]
- Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M.; Mueller, J.L. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean Opt. Protoc. Satell. Ocean Color Sens. Valid. Revis. 2002, 3, 231. [Google Scholar]
- Tassan, S.; Ferrari, G.M. A sensitivity analysis of the “Transmittance—Reflectance” method for measuring light absorption by aquatic particles. J. Plankt. Res. 2002, 24, 757–774. [Google Scholar] [CrossRef]
- Estapa, M.L.; Boss, E.; Mayer, L.M.; Roesler, C.S. Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters. Limnol. Oceanogr. 2011, 57, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Vantrepotte, V.; Brunet, C.; Mériaux, X.; Lécuyer, E.; Vellucci, V.; Santer, R. Bio-optical properties of coastal waters in the Eastern English Channel. Estuar. Coast. Shelf Sci. 2007, 72, 201–212. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible Domains. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Danhiez, F.-P.; Loisel, H.; Ouillon, S.; Mériaux, X.; Cauvin, A.; Dessailly, D. CDOM-DOC relationship in contrasted coastal waters: Implication for DOC retrieval from ocean color remote sensing observation. Opt. Express 2015, 23, 33–54. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Shoaf, W.T.; Lium, B.W. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanogr. 1976, 21, 926–928. [Google Scholar] [CrossRef]
- Van der Linde, D.W. Protocol for determination of total suspended matter in oceans and coastal zones. JRC Tech. Note I 1998, 98, 182. [Google Scholar]
- Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- Shen, Q.; Li, J.; Zhang, F.; Sun, X.; Li, J.; Li, W.; Zhang, B. Classification of Several Optically Complex Waters in China Using in Situ Remote Sensing Reflectance. Remote Sens. 2015, 7, 14731–14756. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Li, Y.; Zhang, Y.; Li, L.; Lv, H.; Song, K. Classification of Inland Waters Based on Bio-Optical Properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 543–561. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Techniques for Image Processing and Classifications in Remote Sensing; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Wilks, D.S. Statistical methods in the atmospheric sciences. In International Geophysics Series, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; ISBN 978-0-12-751966-1. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Vandermeulen, R.A.; Mannino, A.; Craig, S.E.; Werdell, P.J. 150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean. Remote Sens. Environ. 2020, 247, 111900. [Google Scholar] [CrossRef]
- Warren, M.; Simis, S.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Werdell, P.J.; Bailey, S.W.; Franz, B.A.; Harding, L.W., Jr.; Feldman, G.C.; McClain, C.R. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens. Environ. 2009, 113, 1319–1330. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V.; Clerici, M.; D’Alimonte, D.; Zibordi, G.; Berthon, J.-F.; Canuti, E. Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea. Prog. Oceanogr. 2011, 91, 229–244. [Google Scholar] [CrossRef]
- Pinet, S.; Martinez, J.-M.; Ouillon, S.; Lartiges, B.; Villar, R.E. Variability of apparent and inherent optical properties of sediment-laden waters in large river basins—lessons from in situ measurements and bio-optical modeling. Opt. Express 2017, 25, A283–A310. [Google Scholar] [CrossRef]
- Jorge, D.S.F.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Affonso, A.G.; Lobo, F.D.L.; Novo, E.M.L.D.M. SNR (Signal-To-Noise Ratio) Impact on Water Constituent Retrieval from Simulated Images of Optically Complex Amazon Lakes. Remote Sens. 2017, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Gagne-Maynard, W.C.; Ward, N.D.; Keil, R.G.; Sawakuchi, H.O.; Cunha, A.; Neu, V.; Brito, D.; Less, D.F.D.S.; Diniz, J.E.M.; Valerio, A.D.M.; et al. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Danhiez, F.P.; Vantrepotte, V.; Cauvin, A.; Lebourg, E.; Loisel, H. Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption. Limnol. Oceanogr. 2017, 62, 1409–1425. [Google Scholar] [CrossRef]
- Xi, H.; Larouche, P.; Tang, S.; Michel, C. Seasonal variability of light absorption properties and water optical constituents in Hudson Bay, Canada. J. Geophys. Res. Ocean. 2013, 118, 3087–3102. [Google Scholar] [CrossRef]
- Bowers, D.G.; Harker, G.E.L.; Stephan, B. Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll. Int. J. Remote Sens. 1996, 17, 2449–2460. [Google Scholar] [CrossRef]
- Zhang, X.; Huot, Y.; Bricaud, A.; Sosik, H.M. Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. Appl. Opt. 2015, 54, 5805–5816. [Google Scholar] [CrossRef]
- Tzortziou, M.; Subramaniam, A.; Herman, J.; Gallegos, C.; Neale, P.J.; Harding, J.L.W. Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay. Estuar. Coast. Shelf Sci. 2007, 72, 16–32. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Ferrari, G.M.; Bo, F.G.; Babin, M. Geo-chemical and optical characterizations of suspended matter in European coastal waters. Estuar. Coast. Shelf Sci. 2003, 57, 17–24. [Google Scholar] [CrossRef]
- Yepez, S.; Laraque, A.; Martinez, J.-M.; De Sa, J.; Carrera, J.M.; Castellanos, B.; Gallay, M.; Lopez, J.L. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela). Comptes Rendus Geosci. 2018, 350, 20–30. [Google Scholar] [CrossRef]
- Martins, V.S.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.D.L.; Novo, E.M.L.D.M. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, L.A.S.; Barbosa, C.C.F.; Novo, E.M.L.D.M.; Rudorff, C.D.M. Implications of scatter corrections for absorption measurements on optical closure of Amazon floodplain lakes using the Spectral Absorption and Attenuation Meter (AC-S-WETLabs). Remote Sens. Environ. 2015, 157, 123–137. [Google Scholar] [CrossRef]
- Lobo, F.D.L.; Novo, E.M.L.D.M.; Barbosa, C.C.F.; Galvão, L.S. Reference spectra to classify Amazon water types. Int. J. Remote Sens. 2011, 33, 3422–3442. [Google Scholar] [CrossRef]
- Lain, L.R.; Bernard, S. The Fundamental Contribution of Phytoplankton Spectral Scattering to Ocean Colour: Implications for Satellite Detection of Phytoplankton Community Structure. Appl. Sci. 2018, 8, 2681. [Google Scholar] [CrossRef] [Green Version]
- Joshi, I.; D’Sa, E.J. Seasonal Variation of Colored Dissolved Organic Matter in Barataria Bay, Louisiana, Using Combined Landsat and Field Data. Remote Sens. 2015, 7, 12478–12502. [Google Scholar] [CrossRef] [Green Version]
- Albéric, P.; Pérez, M.A.; Moreira-Turcq, P.; Benedetti, M.F.; Bouillon, S.; Abril, G. Variation of the isotopic composition of dissolved organic carbon during the runoff cycle in the Amazon River and the floodplains. C. R. Geosci. 2018, 350, 65–75. [Google Scholar] [CrossRef]
- Costa, M.P.F.; Novo, E.M.L.M.; Telmer, K.H. Spatial and temporal variability of light attenuation in large rivers of the Amazon. Hydrobiology 2012, 702, 171–190. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E. Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimões-Amazon and Negro Rivers junction. Water Resour. Res. 2015, 51, 6197–6213. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E.M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 2014, 147, 232–242. [Google Scholar] [CrossRef]
- Villar, R.E.; Martinez, J.-M.; Le Texier, M.; Guyot, J.L.; Fraizy, P.; Meneses, P.R.; de Oliveira, E. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. J. S. Am. Earth Sci. 2013, 44, 45–54. [Google Scholar] [CrossRef]
- Novo, E.M.L.D.M.; Barbosa, C.C.F.; De Freitas, R.M.; Shimabukuro, Y.E.; Melack, J.M.; Filho, W.P. Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images. Limnology 2006, 7, 153–161. [Google Scholar] [CrossRef]
- Filizola, N.; Guyot, J.L. Suspended sediment yields in the Amazon basin: An assessment using the Brazilian national data set. Hydrol. Process. 2009, 23, 3207–3215. [Google Scholar] [CrossRef]
Parameter | Amazon River | CW Rivers | Total Samples |
---|---|---|---|
aCDOM(λ) (m−1) | 116 | 14 | 130 |
SCDOM(λ) (nm−1) | 116 | 14 | 130 |
ap(λ) (m−1) | 95 | 14 | 109 |
Sp(λ) (nm−1) | 95 | 14 | 109 |
SPM (mg L−1) | 90 | 12 | 102 |
chla (µg L−1) | 85 | 12 | 97 |
Clearwater Rivers | Amazon River | |||||
---|---|---|---|---|---|---|
Average ± SD | CV % | Range | Average ± SD | CV % | Range | |
aCDOM(443) (m−1) | 2.01 ± 0.88 | 44 | 0.74–3.53 | 2.12 ± 0.53 | 25 | 0.89–4.40 |
S275–295 (nm−1) × 10−2 | 1.47 ± 0. 14 | 10 | 1.32–1.85 | 1.45 ± 0. 05 | 3 | 1.30–1.66 |
ap(443) (m−1) | 1.68 ± 2.44 | 145 | 0.37–9.44 | 3.16 ± 2.11 | 67 | 1.18–8.93 |
Sp400–800 (nm−1) × 10−2 | 1.05 ± 0. 13 | 12 | 0. 88–1.30 | 1.05 ± 0. 08 | 8 | 0. 91–1.33 |
SPM (mg L−1) | 14.0 ± 18.1 | 129 | 1.8–67.9 | 69.7 ± 33.8 | 48 | 18.3–160.8 |
chla (µg L−1) | 6.1 ± 7.7 | 126 | 1.5–31.3 | 1.4 ± 0.8 | 57 | 0.5–6.3 |
aCDOM:(aCDOM + ap)(443) | 0.64 ± 0.19 | 30 | 0.17–0.80 | 0.44 ± 0.12 | 27 | 0.17–0.64 |
ap: (aCDOM + ap) (443) | 0.36 ± 0.19 | 53 | 0.20–0.83 | 0.56 ± 0.12 | 21 | 0.36–0.83 |
ap(443): SPM | 0.11 ± 0.05 | 45 | 0.06–0.24 | 0.05 ± 0.01 | 20 | 0.03–0.11 |
aCDOM: (aCDOM + ap) (443) | ap: (aCDOM + ap) (443) | ||||
---|---|---|---|---|---|
Average ± SD | CV % | Average ± SD | CV % | ||
RW | Am | 0.26 ± 0.08 | 31 | 0.74 ± 0.08 | 11 |
CW | 0.55 ± 0.26 | 47 | 0.45 ± 0.26 | 58 | |
HW | Am | 0.48 ± 0.09 | 19 | 0.52 ± 0.09 | 17 |
CW | 0.78 ± 0.03 | 4 | 0.22 ± 0.03 | 14 | |
FW | Am | 0.50 ± 0.07 | 14 | 0.50 ± 0.07 | 14 |
CW | 0.72 ± 0.06 | 8 | 0.28 ± 0.06 | 21 | |
LW | Am | 0.50 ± 0.05 | 10 | 0.50 ± 0.05 | 10 |
CW | 0.62 ± 0.06 | 10 | 0.38 ± 0.06 | 16 |
AOWT1 | AOWT2 | COWT | MAOWT | |||||
---|---|---|---|---|---|---|---|---|
59 Spectra | 46 Spectra | 4 Spectra | 7 Spectra | |||||
Average ± SD | Range | Average ± SD | Range | Average ± SD | Range | Average ± SD | Range | |
aCDOM | 2.2 ± 0.6 | 1.3–4.2 | 2.0 ± 0.2 | 1.6–2.7 | 1.0 ± 0.3 | 0.7–1.3 | 2.4 ± 0.6 | 1.3–3.1 |
(443) (m−1) | ||||||||
S275–295 (nm−1) × 10−2 | 1.44 ± 0.05 | 1.32–1.54 | 1.45 ± 0.03 | 1.40–1.50 | 1.70 ± 0.17 | 1.51–1.85 | 1.41 ± 0.09 | 1.32–1.57 |
ap(443) (m−1) | 2.03 ± 0.69 | 1.18–4.74 | 6.44 ± 1.61 | 2.72–9.44 | 0.48 ± 0.12 | 0.37–0.64 | 0.89 ± 0.25 | 0.50–1.11 |
Sp400–800 (nm−1) × 10−2 | 1.04 ± 0. 06 | 0.91–1.25 | 1.05 ± 0.07 | 0.95–1.26 | 0.93 ± 0.04 | 0.88–0.97 | 1.14 ± 0.14 | 0.95–1.30 |
SPM | 43.6 ± 9.9 | 28.3–68.2 | 95.2 ± 29.4 | 49.8–157.2 | 4.4 ± 2.7 | 1.8–6.8 | 10.0 ± 5.8 | 3.7–17.8 |
(mg L−1) | ||||||||
chla | 1.5 ± 0.8 | 0.5–4.4 | 1.4 ± 0.4 | 0.5–2.1 | 5.1 ± 2.9 | 2.3–8.5 | 9.1 ± 11.2 | 1.8–31.3 |
(mg L−1) | ||||||||
aCDOM: aCDOM + ap (443) | 0.51 ± 0.06 | 0.28–0.64 | 0.25 ± 0.07 | 0.17–0.50 | 0.67 ± 0.10 | 0.55–0.78 | 0.73 ± 0.05 | 0.66–0.80 |
ap: aCDOM + ap (443) | 0.49 ± 0.06 | 0.36–0.72 | 0.75 ± 0.07 | 0.50–0.83 | 0.33 ± 0.10 | 0.22–0.45 | 0.27 ± 0.05 | 0.20–0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valerio, A.d.M.; Kampel, M.; Vantrepotte, V.; Ward, N.D.; Richey, J.E. Optical Classification of Lower Amazon Waters Based on In Situ Data and Sentinel-3 Ocean and Land Color Instrument Imagery. Remote Sens. 2021, 13, 3057. https://doi.org/10.3390/rs13163057
Valerio AdM, Kampel M, Vantrepotte V, Ward ND, Richey JE. Optical Classification of Lower Amazon Waters Based on In Situ Data and Sentinel-3 Ocean and Land Color Instrument Imagery. Remote Sensing. 2021; 13(16):3057. https://doi.org/10.3390/rs13163057
Chicago/Turabian StyleValerio, Aline de M., Milton Kampel, Vincent Vantrepotte, Nicholas D. Ward, and Jeffrey E. Richey. 2021. "Optical Classification of Lower Amazon Waters Based on In Situ Data and Sentinel-3 Ocean and Land Color Instrument Imagery" Remote Sensing 13, no. 16: 3057. https://doi.org/10.3390/rs13163057
APA StyleValerio, A. d. M., Kampel, M., Vantrepotte, V., Ward, N. D., & Richey, J. E. (2021). Optical Classification of Lower Amazon Waters Based on In Situ Data and Sentinel-3 Ocean and Land Color Instrument Imagery. Remote Sensing, 13(16), 3057. https://doi.org/10.3390/rs13163057