Quantification of Phycocyanin in Inland Waters through Remote Measurement of Ratios and Shifts in Reflection Spectral Peaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Field Data Sampling
2.1.2. Remote Sensing Reflectance Retrieval
2.1.3. Pigment Extraction
2.2. Darkroom Spectral Measurements
2.3. Development of the Band-Ratio and Peak-Distance (BRPD) Algorithm
2.4. Model Evaluation
2.5. Error Analysis
2.6. BRPD Application to Aerial Hyperspectral Images
3. Results and Discussion
3.1. Spectral Characteristics Observed from Darkroom Experiment
3.2. Results of BRPD Application to Field Data
3.3. Application of Hyperspectral Images from Remote Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Millie, D.F.; Fahnenstiel, G.L.; Dyble, J.; Pigg, R.; Rediske, R.; Klarer, D.M.; Litaker, R.W.; Tester, P.A. Influence of environmental conditions on late-summer cyanobacterial abundance in Saginaw Bay, Lake Huron. Aquat. Ecosyst. Health Manag. 2008, 11, 196–205. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.M.; Konopko, E.A.; DeBruyn, J.M.; Bourbonniere, R.A.; Boyer, G.L.; Wilhelm, S.W. Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 2009, 8, 665–673. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Dyble, J. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr. 2010, 55, 2025–2036. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Visser, P.M.; Verspagen, J.M.H.; Sandrini, G.; Stal, L.J.; Matthijs, H.C.P.; Davis, T.W.; Paerl, H.W.; Huisman, J. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 2016, 54, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörnhöfer, K.; Klinger, P.; Heege, T.; Oppelt, N. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Sci. Total Environ. 2018, 612, 1200–1214. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting satellite remote sensing for water quality management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
- Bukata, R.P. Retrospection and introspection on remote sensing of inland water quality: “Like Déjà Vu All Over Again”. J. Great Lakes Res. 2013, 39, 2–5. [Google Scholar] [CrossRef]
- Mishra, S. Remote Sensing of Cyanobacteria in Turbid Productive Waters. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2012. [Google Scholar]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hunter, P.D.; Tyler, A.N.; Carvalho, L.; Codd, G.A.; Maberly, S.C. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ. 2010, 114, 2705–2718. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Mishra, D.R.; Lee, Z.; Tucker, C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ. 2013, 133, 141–151. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Schluchter, W.M. A novel algorithm for predicting phycocyanin concentrations in cyanobacteria: A proximal hyperspectral remote sensing approach. Remote Sens. 2009, 1, 758–775. [Google Scholar] [CrossRef] [Green Version]
- Simis, S.G.H.; Peters, S.W.M.; Gons, H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Hu, C. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China. Remote Sens. Environ. 2012, 126, 126–135. [Google Scholar] [CrossRef]
- Ruiz-Verdú, A.; Simis, S.G.H.; de Hoyos, C.; Gons, H.J.; Peña-Martínez, R. An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sens. Environ. 2008, 112, 3996–4008. [Google Scholar] [CrossRef]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, The University of Amsterdam, Amsterdam, The Netherlands, 1993. [Google Scholar]
- Schalles, J.F.; Yacobi, Y.Z. Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters. Ergebnisse Der Limnologie 2000, 55, 153–168. [Google Scholar]
- Li, L.; Li, L.; Song, K. Remote sensing of freshwater cyanobacteria: An extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sens. Environ. 2015, 157, 9–23. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms. Environ. Res. Lett. 2014, 9, 114003. [Google Scholar] [CrossRef]
- Yang, D.; Pan, D. Hyperspectral retrieval model of phycocyanin in case II waters. Chin. Sci. Bull. 2006, 51, 149–153. [Google Scholar] [CrossRef]
- Tao, B.; Mao, Z.; Pan, D.; Shen, Y.; Zhu, Q.; Chen, J. Influence of bio-optical parameter variability on the reflectance peak position in the red band of algal bloom waters. Ecol. Inform. 2013, 16, 17–24. [Google Scholar] [CrossRef]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Gitelson, A.; Mayo, M. Remote Sensing of Chlorophyll in Lake Kinneret Using Highspectral-Resolution Radiometer and Landsat TM: Spectral Features of Reflectance and Algorithm Development. J. Plankton Res. 1995, 17, 2155–2173. [Google Scholar] [CrossRef] [Green Version]
- Zimba, P.V.; Gitelson, A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S. Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa. Biogeosciences 2013, 10, 8139–8157. [Google Scholar] [CrossRef] [Green Version]
- Vaillancourt, R.D.; Brown, C.W.; Guillard, R.R.L.; Balch, W.M. Light backscattering properties of marine phytoplankton: Relationships to cell size, chemical composition and taxonomy. J. Plankton Res. 2004, 26, 191–212. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S. Characterizing the absorption properties for remote sensing of three small optically diverse South African reservoirs. Remote Sens. 2013, 5, 4370–4404. [Google Scholar] [CrossRef] [Green Version]
- Simis, G.H.; Ruiz-Verdu, A.; Gominguez-Gomez, J.A.; Pena-Martinez, R.; Peter, W.M.; Gons, H.M. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sens. Environ. 2007, 106, 414–427. [Google Scholar] [CrossRef]
- Garaba, S.P.; Zielinski, O. Methods in reducing surface reflected glint for shipborne above-water remote sensing. J. Eur. Opt. Soc. Rapid Publ. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Sarada, R.; Pillai, M.G.; Ravishankar, G.A. Phycocyanin from Spirulina sp: Influence of processing of biomasson phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process. Biochem. 1999, 34, 759–801. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Ha, R.; Shin, H.; Nam, G.; Park, S.; Kang, T.; Song, H.; Lee, H. A study on comparison of phycocyanin extraction methods for hyperspectral remote sensing of cyanobacteria in turbid inland waters. J. Korean Soc. Water Environ. 2016, 32, 520–527. [Google Scholar] [CrossRef]
- Federation, W.E.; APH Association. Standard Method for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Han, L.; Rundquist, D.C.; Liu, L.L.; Fraser, R.N.; Schalles, J.F. The spectral responses of algal chlorophyll in water with varying levels of suspended sediment. Int. J. Remote Sens. 1994, 15, 3707–3718. [Google Scholar] [CrossRef]
- Gin, K.Y.H.; Kou, S.T.; Lin, I.I. Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton. Int. J. Remote Sens. 2002, 23, 2163–2178. [Google Scholar] [CrossRef]
- Oyama, Y.; Matsushita, B.; Fukushima, T.; Nagai, T.; Imai, A. A new algorithm for estimating chlorophyll-a concentration from multi-spectral satellite data in case II waters: A simulation based on a controlled laboratory experiment. Int. J. Remote Sens. 2007, 28, 1437–1453. [Google Scholar] [CrossRef]
- Rowan, K.S. Photosynthetic Pigments of Algae; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Ogashawara, I.; Mishra, D.R.; Mishra, S.; Curtarelli, M.P.; Stech, J.L. A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sens. 2013, 5, 4774–4798. [Google Scholar] [CrossRef] [Green Version]
- Richter, R.; Center, R.S.D. ATCOR: Atmospheric and Topographic Correction; German Aerospace Center, Mars: Oberpfaffenhofen, Germany, 2004. [Google Scholar]
- Li, L.; Sengpiel, R.E.; Pascual, D.L.; Tedesco, L.P.; Wilson, J.S.; Soyeux, E. Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir. Int. J. Remote Sens. 2010, 31, 4147–4162. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schelles, J.F.; Rundquist, D.C.; Schiebe, F.R.; Yacobi, Y. Comparative reflectance properties of algal cultures with manipulated densities. J. Appl. Phycol. 1999, 11, 345–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Yacobi, Y.Z.; Schalles, J.F.; Rundquist, D.C.; Han, L.; Stark, R.; Etzion, D. Remote estimation of phytoplankton density in productive waters. Arch. HydrobioI. Spec. Issues Advanc. Limnol. 2000, 55, 121–136. [Google Scholar]
- Rundquist, D.C.; Han, L.; Schalles, J.F.; Peake, J.S. Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690 nm. Photogramm. Eng. Remote Sens. 1996, 62, 195–200. [Google Scholar]
- Gitelson, A.A.; Laorawat, S.; Keydan, G.P.; Vonshank, A. Optical Properties of dense algal culture outdoors and their application to remote estimation of biomass and pigment concentration in Spirulina Platensis (Cyanobacteria). J. Phycol. 1995, 31, 828–834. [Google Scholar] [CrossRef]
- Kim, K.; Mun, H.; Shin, H.; Park, S.; Yu, C.; Lee, J.; Yoon, Y.; Chung, H.; Yun, H.; Lee, K.; et al. Nitrogen stimulates Microcystis-dominated blooms more than phosphorus in river conditions that favor non-nitrogen-fixing genera. Environ. Sci. Technol. 2020, 54, 7185–7193. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, S.; Yoon, H. Utilization of unmanned aerial vehicle(UAV) image for detection of algal bloom in Nakdong River. J. KIECS 2017, 12, 457–463. [Google Scholar]
- Jung, W.; Jo, B.; Kim, Y.; Kim, S. A study on the characteristics of cyanobacteria in the mainstream of Nakdong River using decision trees. J. Wet. Res. 2019, 21, 312–320. [Google Scholar]
- Choi, J.; Min, J.; Choi, B.; Kang, J.; Choi, K.; Lee, S.; Shin, K. Variation of primary productivity and phytoplankton community in the weirs of mid and downstream of the Nakdong River during fall and early winter: Application of phytoplankton pigments and CHEMTAX. Korean Soc. Limnol. 2019, 52, 81–93. [Google Scholar] [CrossRef]
I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|
Phycocyanin (mg/m3) | 89.1 | 178.2 | 890.8 | 2227.0 | 3117.8 | 8908.1 |
Cell counts (×103 cells/mL) | 10 | 20 | 100 | 250 | 350 | 1000 |
HU10 (Hunter et al., 2010) | |
MM09 (Ogashawara et al., 2013) | |
Si05 (Simis et al., 2005) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, G.; Shin, H.; Ha, R.; Song, H.; Yoo, J.; Lee, H.; Park, S.; Kang, T.; Kim, K. Quantification of Phycocyanin in Inland Waters through Remote Measurement of Ratios and Shifts in Reflection Spectral Peaks. Remote Sens. 2021, 13, 3335. https://doi.org/10.3390/rs13163335
Nam G, Shin H, Ha R, Song H, Yoo J, Lee H, Park S, Kang T, Kim K. Quantification of Phycocyanin in Inland Waters through Remote Measurement of Ratios and Shifts in Reflection Spectral Peaks. Remote Sensing. 2021; 13(16):3335. https://doi.org/10.3390/rs13163335
Chicago/Turabian StyleNam, Gibeom, Hyunjoo Shin, Rim Ha, Hyunoh Song, Jaehyun Yoo, Hyuk Lee, Sanghyun Park, Taegu Kang, and Kyunghyun Kim. 2021. "Quantification of Phycocyanin in Inland Waters through Remote Measurement of Ratios and Shifts in Reflection Spectral Peaks" Remote Sensing 13, no. 16: 3335. https://doi.org/10.3390/rs13163335
APA StyleNam, G., Shin, H., Ha, R., Song, H., Yoo, J., Lee, H., Park, S., Kang, T., & Kim, K. (2021). Quantification of Phycocyanin in Inland Waters through Remote Measurement of Ratios and Shifts in Reflection Spectral Peaks. Remote Sensing, 13(16), 3335. https://doi.org/10.3390/rs13163335